Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 4(6): fcac271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415660

RESUMO

Intracranial volume, measured through magnetic resonance imaging and/or estimated from head circumference, is heritable and correlates with cognitive traits and several neurological disorders. We performed a genome-wide association study meta-analysis of intracranial volume (n = 79 174) and found 64 associating sequence variants explaining 5.0% of its variance. We used coding variation, transcript and protein levels, to uncover 12 genes likely mediating the effect of these variants, including GLI3 and CDK6 that affect cranial synostosis and microcephaly, respectively. Intracranial volume correlates genetically with volumes of cortical and sub-cortical regions, cognition, learning, neonatal and neurological traits. Parkinson's disease cases have greater and attention deficit hyperactivity disorder cases smaller intracranial volume than controls. Our Mendelian randomization studies indicate that intracranial volume associated variants either increase the risk of Parkinson's disease and decrease the risk of attention deficit hyperactivity disorder and neuroticism or correlate closely with a confounder.

2.
Nat Commun ; 13(1): 1598, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332129

RESUMO

Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (48,843 cases and 1,190,837 controls), we found 53 sequence variants at 50 loci associated with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10-24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in bilateral/recurrent/persistent cases than nonrecurrent/nonpersistent cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.


Assuntos
Síndrome do Túnel Carpal , Antropometria , Síndrome do Túnel Carpal/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
3.
Commun Biol ; 4(1): 1148, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620984

RESUMO

Vertigo is the leading symptom of vestibular disorders and a major risk factor for falls. In a genome-wide association study of vertigo (Ncases = 48,072, Ncontrols = 894,541), we uncovered an association with six common sequence variants in individuals of European ancestry, including missense variants in ZNF91, OTOG, OTOGL, and TECTA, and a cis-eQTL for ARMC9. The association of variants in ZNF91, OTOGL, and OTOP1 was driven by an association with benign paroxysmal positional vertigo. Using previous reports of sequence variants associating with age-related hearing impairment and motion sickness, we found eight additional variants that associate with vertigo. Although disorders of the auditory and the vestibular system may co-occur, none of the six genome-wide significant vertigo variants were associated with hearing loss and only one was associated with age-related hearing impairment. Our results uncovered sequence variants associating with vertigo in a genome-wide association study and implicated genes with known roles in inner ear development, maintenance, and disease.


Assuntos
Orelha Interna/crescimento & desenvolvimento , Genoma Humano , Estudo de Associação Genômica Ampla , Doenças do Labirinto/genética , Vertigem/genética , Humanos , Mutação de Sentido Incorreto
4.
Sci Rep ; 11(1): 4188, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602968

RESUMO

Bell's palsy is the most common cause of unilateral facial paralysis and is defined as an idiopathic and acute inability to control movements of the facial muscles on the affected side. While the pathogenesis remains unknown, previous studies have implicated post-viral inflammation and resulting compression of the facial nerve. Reported heritability estimates of 4-14% suggest a genetic component in the etiology and an autosomal dominant inheritance has been proposed. Here, we report findings from a meta-analysis of genome-wide association studies uncovering the first unequivocal association with Bell's palsy (rs9357446-A; P = 6.79 × 10-23, OR = 1.23; Ncases = 4714, Ncontrols = 1,011,520). The variant also confers risk of intervertebral disc disorders (P = 2.99 × 10-11, OR = 1.04) suggesting a common pathogenesis in part or a true pleiotropy.


Assuntos
Paralisia de Bell/genética , Adulto , Idoso , Músculos Faciais/patologia , Nervo Facial/patologia , Paralisia Facial/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Estudos Prospectivos , Risco
5.
Commun Biol ; 3(1): 703, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239738

RESUMO

Restless legs syndrome (RLS) is a common neurological sensorimotor disorder often described as an unpleasant sensation associated with an urge to move the legs. Here we report findings from a meta-analysis of genome-wide association studies of RLS including 480,982 Caucasians (cases = 10,257) and a follow up sample of 24,977 (cases = 6,651). We confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three novel RLS associations; rs112716420-G (OR = 1.25, P = 1.5 × 10-18), rs10068599-T (OR = 1.09, P = 6.9 × 10-10) and rs10769894-A (OR = 0.90, P = 9.4 × 10-14). At four of the 22 RLS loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk score for RLS we extended prior epidemiological findings implicating obesity, smoking and high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of seeking better treatments, more genetics studies yielding deeper insights into the disease biology are needed.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Síndrome das Pernas Inquietas , Adulto , Idoso , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Síndrome das Pernas Inquietas/epidemiologia , Síndrome das Pernas Inquietas/genética
6.
Curr Cancer Drug Targets ; 19(5): 408-416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30479216

RESUMO

BACKGROUND: Cancer remains one of the most serious disease worldwide. Robust metabolism is the hallmark of cancer. PPAT (phosphoribosyl pyrophosphate amidotransferase) catalyzes the first committed step of de novo purine biosynthesis. Hence PPAT, the key regulatory spot in De novo purine nucleotide biosynthesis, is an attractive and credible drug target for leukemia and other cancer therapeutics. OBJECTIVE: In the present study, detailed computational analysis has been performed for PPAT protein, the key enzyme in de novo purine biosynthesis which is inhibited by many folate derivatives, hence we aimed to investigate and gauge the inhibitory effect of antifolate derivatives; lomexterol (LTX) methotrexate (LTX), and pipretixin (PTX) with human PPAT to effectively capture and inhibit De novo purine biosynthesis pathway. METHODS: The sequence to structure computational approaches followed by molecular docking experiments was performed to gain insight into the inhibitory mode, binding orientation and binding affinities of selected antifolate derivatives against important structural features of PPAT. RESULTS: Results indicated a strong affinity of antifolate inhibitors for the conserved active site of PPAT molecule encompassing a number of hydrophobic, hydrogen bonding, Vander Waals and electrostatic interactions. CONCLUSION: Conclusively, the strong physical interaction of selected antifolate inhibitors with human PPAT suggests the selective inhibition of De novo purine biosynthesis pathway by antifolate derivatives towards cancer therapeutics.


Assuntos
Amidofosforribosiltransferase/química , Amidofosforribosiltransferase/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Simulação de Acoplamento Molecular , Purinas/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Antagonistas do Ácido Fólico/química , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Conformação Proteica , Homologia de Sequência
7.
Saudi J Biol Sci ; 24(6): 1155-1161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28855807

RESUMO

In humans, purine de novo synthesis pathway consists of multi-functional enzymes. Nucleotide metabolism enzymes are potential drug targets for treating cancer and autoimmune diseases. Glycinamide ribonucleotide transformylase (GART) is one of the most important trifunctional enzymes involved in purine synthesis. Previous studies have demonstrated the role of folate inhibitors against tumor activity. In this present study, three components of GART enzyme were targeted as receptor dataset and in silico analysis was carried out with folate ligand dataset. To accomplish the task, Autodock 4.2 was used for determining the docking compatibilities of ligand and receptor dataset. Taken together, it has been suggested that folate ligands could be potentially used as inhibitors of GART.

8.
Biol Psychiatry ; 79(5): 383-391, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26444075

RESUMO

BACKGROUND: Gilles de la Tourette syndrome (GTS) is a complex neuropsychiatric disorder with a strong genetic influence where copy number variations are suggested to play a role in disease pathogenesis. In a previous small-scale copy number variation study of a GTS cohort (n = 111), recurrent exon-affecting microdeletions of four genes, including the gene encoding arylacetamide deacetylase (AADAC), were observed and merited further investigations. METHODS: We screened a Danish cohort of 243 GTS patients and 1571 control subjects for submicroscopic deletions and duplications of these four genes. The most promising candidate gene, AADAC, identified in this Danish discovery sample was further investigated in cohorts from Iceland, the Netherlands, Hungary, Germany, and Italy, and a final meta-analysis, including a total of 1181 GTS patients and 118,730 control subjects from these six European countries, was performed. Subsequently, expression of the candidate gene in the central nervous system was investigated using human and mouse brain tissues. RESULTS: In the Danish cohort, we identified eight patients with overlapping deletions of AADAC. Investigation of the additional five countries showed a significant association between the AADAC deletion and GTS, and a final meta-analysis confirmed the significant association (p = 4.4 × 10(-4); odds ratio = 1.9; 95% confidence interval = 1.33-2.71). Furthermore, RNA in situ hybridization and reverse transcription-polymerase chain reaction studies revealed that AADAC is expressed in several brain regions previously implicated in GTS pathology. CONCLUSIONS: AADAC is a candidate susceptibility factor for GTS and the present findings warrant further genomic and functional studies to investigate the role of this gene in the pathogenesis of GTS.


Assuntos
Variações do Número de Cópias de DNA/genética , Deleção de Sequência/genética , Síndrome de Tourette/genética , Adulto , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Coortes , Comorbidade , Dinamarca , Éxons , Feminino , Técnicas de Genotipagem , Alemanha , Humanos , Hungria , Islândia , Itália , Masculino , Camundongos , Países Baixos
9.
Artigo em Inglês | MEDLINE | ID: mdl-24024521

RESUMO

Nanoparticles (NPs) that are ∼100 nm in diameter can potentially cause toxicity in the central nervous system (CNS). Although NPs exhibit positive aspects, these molecules primarily exert negative or harmful effects. Thus, the beneficial and harmful effects should be compared. The prevalence of neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, and some brain tumors, has increased. However, the major cause of these diseases remains unknown. NPs have been considered as one of the major potential causes of these diseases, penetrating the human body via different pathways. This review summarizes various pathways for NP-induced neurotoxicity, suggesting the development of strategies for nanoneuroprotection using in silico and biological methods. Studies of oxidative stress associated with gene expression analyses provide efficient information for understanding neuroinflammation and neurodegeneration associated with NPs. The brain is a sensitive and fragile organ, and evolution has developed mechanisms to protect it from injury; however, this protection also hinders the methods used for therapeutic purposes. Thus, brain and CNS-related diseases that are the cause of disability and disorder are the most difficult to treat. There are many obstacles to drug delivery in the CNS, such as the blood brain barrier and blood tumor barrier. Considering these barriers, we have reviewed the strategies available to map NPs using biological techniques. The surface adsorption energy of NPs is the basic force driving NP gathering, protein corona formation, and many other interactions of NPs within biological systems. These interactions can be described using an approach named the biological surface adsorption index. A quantitative structural activity relationship study helps to understand different protein-protein or protein-ligand interactions. Moreover, equilibrium between cerebrovascular permeability is required when a drug is transferred via the circulatory system for the therapy of neurodegenerative diseases. Various drug delivery approaches, such as chemical drug delivery and carrier-mediated drug delivery, have been established to avoid different barriers inhibiting CNS penetration by therapeutic substances. Developing an improved understanding of drug receptors and the sites of drug action, together with advances in medicinal chemistry, will make it possible to design drugs with greatly enhanced activity and selectivity; this may result in a significant increase in the therapeutic index.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/toxicidade , Nanopartículas/uso terapêutico , Animais , Transporte Biológico , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Camundongos , Nanopartículas/metabolismo , Ratos
10.
Invest New Drugs ; 31(5): 1355-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23483322

RESUMO

Selectively decreasing the availability of precursors for the de novo biosynthesis of purine nucleotides is a valid approach towards seeking a cure for leukaemia. Nucleotides and deoxynucleotides are required by living cells for syntheses of RNA, DNA, and cofactors such as NADP(+), FAD(+), coenzyme A and ATP. Nucleotides contain purine and pyrimidine bases, which can be synthesized through salvage pathway as well. Amido phosphoribosyltransferase (APRT), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme that in humans is encoded by the PPAT (phosphoribosyl pyrophosphate amidotransferase) gene. APRT catalyzes the first committed step of the de novo pathway using its substrate, phosphoribosyl pyrophosphate (PRPP). As APRT is inhibited by many folate analogues, therefore, in this study we focused on the inhibitory effects of three folate analogues on APRT activity. This is extension of our previous wet lab work to analyze and dissect molecular interaction and inhibition mechanism using molecular modeling and docking tools in the current study. Comparative molecular docking studies were carried out for three diamino folate derivatives employing a model of the human enzyme that was built using the 3D structure of Bacillus subtilis APRT (PDB ID; 1GPH) as the template. Binding orientation of interactome indicates that all compounds having nominal cluster RMSD in same active site's deep narrow polar fissure. On the basis of comparative conformational analysis, electrostatic interaction, binding free energy and binding orientation of interactome, we support the possibility that these molecules could behave as APRT inhibitors and therefore may block purine de novo biosynthesis. Consequently, we suggest that PY899 is the most active biological compound that would be a more potent inhibitor for APRT inhibition than PY873 and DIA, which also confirms previous wet lab report.


Assuntos
Amidofosforribosiltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Ácidos Ftálicos/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Amidofosforribosiltransferase/química , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Sítios de Ligação , Simulação por Computador , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
11.
PLoS One ; 8(1): e54630, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372744

RESUMO

The observed genetic alterations of various extracellular and intracellular WNT (Wingless, Int-1 proto-oncogene) signaling components can result in an increase or decrease in gene expression, and hence can be obstructed proficiently. These genetics target sites may include the prevention of WNT-FZD (Frizzled) binding, destruction of ß-catenin and formation of Axin, APC and GSK-3ß complex. Hence, the localized targeting of these interacting partners can help in devising novel inhibitors against WNT signaling. Our present study is an extension of our previous work, in which we proposed the co-regulated expression pattern of the WNT gene cluster (WNT-1, WNT-6, WNT-10A and WNT-10B) in human breast carcinoma. We present here the computationally modeled three dimensional structure of human WNT-1 in complex with the FZD-1 CRD (Cysteine Rich Domain) receptor. The dimeric cysteine-rich domain was found to fit into the evolutionarily conserved U-shaped groove of WNT protein. The two ends of the U- shaped cleft contain N-terminal and C-terminal hydrophobic residues, thus providing a strong hydrophobic moiety for the frizzled receptor and serving as the largest binding pocket for WNT-FZD interaction. Detailed structural analysis of this cleft revealed a maximum atomic distance of ~28 Å at the surface, narrowing down to ~17 Å and again increasing up to ~27 Å at the bottom. Altogether, structural prediction analysis of WNT proteins was performed to reveal newer details about post-translational modification sites and to map the novel pharmacophore models for potent WNT inhibitors.


Assuntos
Desenho de Fármacos , Receptores Frizzled/química , Modelos Moleculares , Proteínas Wnt/química , Sequência de Aminoácidos , Simulação por Computador , Receptores Frizzled/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proto-Oncogene Mas , Alinhamento de Sequência , Proteínas Wnt/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-23360257

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease distinguished by progressive memory loss and cognitive decline. It is accompanied by classical neuropathological changes, including cerebral deposits of amyloid- beta peptide (Aß) containing senile plaques, neurofibrillary tangles (NFTs) of phosphorylated tau (p-tau), and clusters of activated glial cells. Postmortem studies strongly support a critical role for neuroinflammation in the pathogenesis of AD, with activated microglia and reactive astrocytes surrounding senile plaques and NFTs. These are accompanied by an elevated expression of inflammatory mediators that further drives Aß and p-tau generation. Although epidemiological and experimental studies suggested that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may lessen AD risk by mitigating inflammatory responses, primary NSAID treatment trials of AD have not proved successful. Elevated systemic butyrylcholinesterase (BuChE) levels have been considered a marker of low-grade systemic inflammation, and BuChE levels are reported elevated in AD brain. Recent research indicates that selective brain inhibition of BuChE elevates acetylcholine (ACh) and augments cognition in rodents free of the characteristic undesirable actions of acetylcholinesterase- inhibitors (AChE-Is). Hence, centrally active BuChE-selective-inhibitors, cymserine analogs, have been developed to test the hypothesis that BuChE-Is would be efficacious and better tolerated than AChE-Is in AD. The focus of the current study was to undertake an in-silico evaluation of an agent to assess its potential to halt the self-propagating interaction between inflammation,Aß and p-tau generation. Molecular docking studies were performed between the novel BuChE-I, N1-p-fluorobenzyl-cymserine (FBC) and inflammatory targets to evaluate the potential of FBC as an inhibitor of p38, JNK kinases and TNF-α with respect to putative binding free energy and IC50 values. Our in-silico studies support the ability of FBC to bind these targets in a manner supportive of anti-inflammatory action that is subject to molecular dynamics and physiochemical studies for auxiliary confirmation.


Assuntos
Doença de Alzheimer/fisiopatologia , Inibidores da Colinesterase/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Fisostigmina/análogos & derivados , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Mediadores da Inflamação/antagonistas & inibidores , Simulação de Acoplamento Molecular , Fisostigmina/química , Proteínas tau/biossíntese
13.
CNS Neurol Disord Drug Targets ; 11(4): 463-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22583429

RESUMO

Parkinson's disease is a major age-related neurodegenerative disorder. As the classical disease-related motor symptoms are associated with the loss of dopamine-generating cells within the substantia nigra, tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines has become an important target in the development of Parkinson's disease drug candidates, with the focus to augment TH levels or its activity. By contrast, TH inhibitors are of relevance in the treatment of conditions associated with catecholamine over-production, as occurs in pheochromocytomas. To aid characterizing new drug candidates, a molecular docking study of catecholamines and a novel hypothetical compound [4-(propan-2-yl) phenyl]carbamic acid (PPCA) with TH is described. Docking was performed using Autodock4.2 and results were analyzed using Chimera1.5.2. All the studied ligands were found to bind within a deep narrow groove lined with polar aromatic and acidic residues within TH. Our results corroborated a 'hexa interacting amino acids unit' located in this deep narrow groove crucial to the interaction of PPCA and the studied catecholamines with TH, whereby the 'His361-His336 dyad' was found to be even more crucial to these binding interactions. PPCA displayed a binding interaction with human TH that was comparable to the original TH substrate, L-tyrosine. Hence PPCA may warrant in vitro and in vivo characterization with TH to assess its potential as a candidate therapeutic.


Assuntos
Carbamatos/química , Catecolaminas/química , Ligantes , Doença de Parkinson/enzimologia , Domínios e Motivos de Interação entre Proteínas , Tirosina 3-Mono-Oxigenase/química , Sequência de Aminoácidos , Animais , Catecolaminas/metabolismo , Dopamina/química , Dopamina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/enzimologia , Alinhamento de Sequência , Homologia Estrutural de Proteína , Substância Negra/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Genomics Proteomics Bioinformatics ; 10(1): 35-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22449399

RESUMO

Linking similar proteins structurally is a challenging task that may help in finding the novel members of a protein family. In this respect, identification of conserved sequence can facilitate understanding and classifying the exact role of proteins. However, the exact role of these conserved elements cannot be elucidated without structural and physiochemical information. In this work, we present a novel desktop application MotViz designed for searching and analyzing the conserved sequence segments within protein structure. With MotViz, the user can extract a complete list of sequence motifs from loaded 3D structures, annotate the motifs structurally and analyze their physiochemical properties. The conservation value calculated for an individual motif can be visualized graphically. To check the efficiency, predicted motifs from the data sets of 9 protein families were analyzed and MotViz algorithm was more efficient in comparison to other online motif prediction tools. Furthermore, a database was also integrated for storing, retrieving and performing the detailed functional annotation studies. In summary, MotViz effectively predicts motifs with high sensitivity and simultaneously visualizes them into 3D strucures. Moreover, MotViz is user-friendly with optimized graphical parameters and better processing speed due to the inclusion of a database at the back end. MotViz is available at http://www.fi-pk.com/motviz.html.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Proteínas/química , Análise de Sequência de Proteína , Software , Algoritmos , Sequência de Aminoácidos , Sequência Conservada , Modelos Moleculares , Estrutura Terciária de Proteína
15.
Genomics Proteomics Bioinformatics ; 10(6): 354-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23317703

RESUMO

Recent advances in the development of high-throughput tools have significantly revolutionized our understanding of molecular mechanisms underlying normal and dysfunctional biological processes. Here we present a novel computational tool, transcription factor search and analysis tool (TrFAST), which was developed for the in silico analysis of transcription factor binding sites (TFBSs) of signaling pathway-specific TFs. TrFAST facilitates searching as well as comparative analysis of regulatory motifs through an exact pattern matching algorithm followed by the graphical representation of matched binding sites in multiple sequences up to 50kb in length. TrFAST is proficient in reducing the number of comparisons by the exact pattern matching strategy. In contrast to the pre-existing tools that find TFBS in a single sequence, TrFAST seeks out the desired pattern in multiple sequences simultaneously. It counts the GC content within the given multiple sequence data set and assembles the combinational details of consensus sequence(s) located at these regions, thereby generating a visual display based on the abundance of unique pattern. Comparative regulatory region analysis of multiple orthologous sequences simultaneously enhances the features of TrFAST and provides a significant insight into study of conservation of non-coding cis-regulatory elements. TrFAST is freely available at http://www.fi-pk.com/trfast.html.


Assuntos
Algoritmos , DNA/química , DNA/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Composição de Bases , Sítios de Ligação/genética , Simulação por Computador , DNA Intergênico/química , DNA Intergênico/metabolismo , Humanos , Ligação Proteica , Fatores de Transcrição/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...