Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38255679

RESUMO

Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.

2.
Front Immunol ; 13: 1058531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544755

RESUMO

Introduction: In recent decades, the development of immunotherapy and targeted therapies has considerably improved the outcome of non-small cell lung cancer (NSCLC) patients. Despite these impressive clinical benefits, new biomarkers are needed for an accurate stratification of NSCLC patients and a more personalized management. We recently showed that the tumor suppressor fragile histidine triad (FHIT), frequently lost in NSCLC, controls HER2 receptor activity in lung tumor cells and that tumor cells from NSCLC patients harboring a FHITlow/pHER2high phenotype are sensitive to anti-HER2 drugs. Here, we sought to identify the transcriptomic signature of this phenotype and evaluate its clinical significance. Materials and methods: We performed RNA sequencing analysis on tumor cells isolated from NSCLC (n=12) according to FHIT/pHER2 status and a functional analysis of differentially regulated genes. We also investigated the FHITlow/pHER2high signature in The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) (n=489) and lung squamous cell carcinoma (LUSC) (n=493) cohorts and used the tumor immune dysfunction and exclusion (TIDE) model to test the ability of this signature to predict response to immune checkpoint inhibitors (ICI). Results: We showed that up-regulated genes in FHITlow/pHER2high tumors were associated with cell proliferation, metabolism and metastasis, whereas down-regulated genes were related to immune response. The FHITlow/pHER2high signature was associated with the higher size of tumors, lymph node involvement, and late TNM stages in LUAD and LUSC cohorts. It was identified as an independent predictor of overall survival (OS) in LUAD cohort. FHITlow/pHER2high tumors were also predictive of poor response to ICI in both LUAD and LUSC cohorts. Conclusion: These data suggest that ICI might not be a relevant option for NSCLC patients with FHITlow/pHER2high tumors and that anti-HER2 targeted therapy could be a good therapeutic alternative for this molecular subclass with poorer prognosis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transcriptoma , Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Imunoterapia
3.
Front Cell Dev Biol ; 9: 749364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938731

RESUMO

Delocalization of zonula occludens-1 (ZO-1) from tight junctions plays a substantial role in epithelial cell plasticity observed during tumor progression. In vitro, we reported an impact of ZO-1 cyto-nuclear content in modulating the secretion of several pro-inflammatory chemokines. In vivo, we demonstrated that it promotes the recruitment of immune cells in mouse ear sponge assays. Examining lung cancers, we showed that a high density of CD8 cytotoxic T cells and Foxp3 immunosuppressive regulatory T cells in the tumor microenvironment correlated with a cyto-nuclear expression of ZO-1. Taken together, our results support that, by affecting tumor cell secretome, the cyto-nuclear ZO-1 pool may recruit immune cells, which could be permissive for tumor progression.

4.
BMC Biol ; 19(1): 228, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674701

RESUMO

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Assuntos
Neoplasias , Núcleosídeo-Difosfato Quinase , Animais , Membranas Intracelulares , Camundongos , Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
5.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298636

RESUMO

Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.

6.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918324

RESUMO

Epithelial-mesenchymal transition (EMT) is important for the initial steps of metastasis. Although it is well accepted that the nucleoside diphosphate kinase NME1 is a metastasis suppressor, its effect on EMT remains poorly documented, as does that of its closely related isoform, NME2. Here, by using gene silencing, inactivation and overexpression strategies in a variety of cellular models of cancer, we show that NME1 is a powerful inhibitor of EMT. Genetic manipulation of NME2, by contrast, had no effect on the EMT phenotype of cancer cells, indicating a specific function of NME1 in EMT regulation. Loss of NME1 in epithelial cancer cells resulted in a hybrid phenotype intermediate between epithelial and mesenchymal cells, which is known to be associated with cells with a highly metastatic character. Conversely, overexpression of NME1 in mesenchymal cancer cells resulted in a more epithelial phenotype. We found that NME1 expression was negatively associated with EMT markers in many human cancers and was reduced in human breast tumor cell lines with the aggressive 'triple-negative' phenotype when compared to human breast tumor cell lines positive for estrogen receptor. We show that NME1, but not NME2, is an inhibitor of essential concerted intracellular signaling pathways involved in inducing EMT, including the AKT and MAPK (ERK, p38, and JNK) pathways. Additionally, NME1 depletion considerably altered the distribution of E-cadherin, a gatekeeper of the epithelial phenotype, shifting it from the plasma membrane to the cytosol and resulting in less E-cadherin on the cell surface than in control cells. Functional aggregation and dispersion assays demonstrated that inactivation of NME1 decreases E-cadherin-mediated cell-cell adhesion. We conclude that NME1, but not NME2, acts specifically to inhibit EMT and prevent the earliest stages of metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Feminino , Edição de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Neoplasias de Mama Triplo Negativas/metabolismo
7.
Cancers (Basel) ; 12(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290283

RESUMO

Recent findings suggest that S100A4, a protein involved in communication between stromal cells and cancer cells, could be more involved than previously expected in cancer invasiveness. To investigate its cumulative value in the multistep process of the pathogenesis of malignant mesothelioma (MM), SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra), an advanced and robust technique of quantitative proteomics, was used to analyze a collection of 26 preneoplastic and neoplastic rat mesothelial cell lines and models of MM with increasing invasiveness. Secondly, proteomic and histological analyses were conducted on formalin-fixed paraffin-embedded sections of liver metastases vs. primary tumor, and spleen from tumor-bearing rats vs. controls in the most invasive MM model. We found that S100A4, along with 12 other biomarkers, differentiated neoplastic from preneoplastic mesothelial cell lines, and invasive vs. non-invasive tumor cells in vitro, and MM tumors in vivo. Additionally, S100A4 was the only protein differentiating preneoplastic mesothelial cell lines with sarcomatoid vs. epithelioid morphology in relation to EMT (epithelial-to-mesenchymal transition). Finally, S100A4 was the most significantly increased biomarker in liver metastases vs. primary tumor, and in the spleen colonized by MM cells. Overall, we showed that S100A4 was the only protein that showed increased abundance in all situations, highlighting its crucial role in all stages of MM pathogenesis.

8.
J Pathol ; 251(2): 187-199, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32237123

RESUMO

Despite its efficacy in solid tumours, in particular HER2+ breast cancer, HER2-targeted therapy has given rise to disappointing results in non-small cell lung cancer (NSCLC). With the aim of refining the target population for anti-HER2 therapies in NSCLC, we investigated the relationships between HER2 and the tumour suppressor fragile histidine triad (FHIT) in lung tumour cells. First, we observed a negative correlation between FHIT expression and the activated form of HER2 (pHER2) in NSCLC samples and in lung tumour cell lines. Moreover, the silencing or overexpression of FHIT in lung cell lines led to an increase or decrease of HER2 activity, respectively. We also demonstrated that two anti-HER2 drugs, irbinitinib and trastuzumab, restore a more epithelial phenotype and counteract cell invasiveness and growth of FHIT-silenced tumour cell lines. Finally, we showed that the FHITlow /pHER2high phenotype predicts sensitivity to an anti-HER2 therapy in primary tumour cells from NSCLC patients. Our results show that FHIT regulates the activity of HER2 in lung tumour cells and that FHIT-inactivated tumour cells are sensitive to HER2 inhibitors. A new subclass of patients with NSCLC may be eligible for an anti-HER2 therapy. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab/farmacologia , Células A549 , Hidrolases Anidrido Ácido/genética , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 11(10)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546725

RESUMO

In non-metastatic non-small-cell lung cancer (NSCLC), outcomes remain poor. Adjuvant chemotherapies provide a limited improvement in disease-free survival. Recent exploratory studies on early-stage NSCLC show that immunotherapy given according to Programmed Death-Ligand 1 expression generates variable results, emphasizing a need to improve tumor characterization. We aimed to conjointly assess NSCLC, the expression of PD-L1, and epithelial-mesenchymal transition, frequently involved in tumor aggressiveness. 188 resected NSCLCs were analyzed. Among 188 patients with curatively resected NSCLC, 127 adenocarcinomas and 61 squamous cell carcinomas were stained for PD-L1 and vimentin expression. Overall survival has been compared regarding PD-L1 and vimentin statuses both separately and conjointly in Tumor Cancer Genome Atlas databases. PD-L1 and vimentin higher expressions were strongly associated (OR = 4.682, p < 0.0001). This co-expression occurred preferentially in tumors with lymph node invasion (p = 0.033). PD-L1 was significantly associated with high EMT features. NSCLC harboring both PD-L1high/vimentinhigh expressions were significantly associated with poor overall survival (p = 0.019). A higher co-expression of vimentin and PD-L1 was able to identify patients with worse outcomes. Similar to an important prognostic marker in NSCLC, this tandem marker needs to be further presented to anti-PD-L1 immunotherapies to improve outcome.

10.
Oncotarget ; 8(34): 57552-57573, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915695

RESUMO

A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.

11.
FASEB J ; 31(4): 1678-1688, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057697

RESUMO

Zonula occludens-1 (ZO-1) is a submembrane scaffolding protein that may display proinvasive functions when it relocates from tight junctions into the cytonuclear compartment. This article examines the functional involvement of ZO-1 in CXCL8/IL-8 chemokine expression in lung and breast tumor cells. ZO-1 small interfering RNA and cDNA transfection experiments emphasized regulation of CXCL8/IL-8 expression via a cytonuclear pool of ZO-1. Luciferase reporter assays highlighted a 173-bp region of CXCL8/IL-8 promoter that responded to ZO-1. Moreover, by using mutated promoter constructs, we identified a NF-κB site as critical in this activation. Furthermore, NF-κB pathway signaling analysis revealed both IκBα and p65 phosphorylation in ZO-1-overexpressing cells, and subsequent p65 silencing validated its requirement for CXCL8/IL-8 induction. Investigation of the functional implication of this regulatory axis next showed the proangiogenic activity of ZO-1 in both ex vivo and in vivo angiogenesis assays. Finally, we found that non-small-cell lung carcinoma that presented a cytonuclear ZO-1 pattern was significantly more angiogenic that that without detectable cytonuclear ZO-1 expression. Taken together, our results demonstrate that ZO-1 regulates CXCL8/IL-8 expression via the NF-κB signaling pathway and its p65 subunit, which subsequently modulates the transcription of IL-8. We also provide evidence of a newly identified regulatory pathway that could promote angiogenesis. Thus, our results support the concept that the ZO-1 shuttle from the cell junction to the cytonuclear compartment may affect both the intrinsic invasive properties of tumor cells and the establishment of the protumoral microenvironment.-Lesage, J., Suarez-Carmona, M., Neyrinck-Leglantier, D., Grelet, S., Blacher, S., Hunziker, W., Birembaut, P., Noël, A., Nawrocki-Raby, B., Gilles, C., Polette, M. Zonula occludens-1/NF-κB/CXCL8: a new regulatory axis for tumor angiogenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica/genética , Proteína da Zônula de Oclusão-1/metabolismo , Humanos , Interleucina-8/genética , Células MCF-7 , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas
12.
Respir Res ; 17(1): 129, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27751187

RESUMO

BACKGROUND: In acutely injured lungs, massively recruited polymorphonuclear neutrophils (PMNs) secrete abnormally neutrophil elastase (NE). Active NE creates a localized proteolytic environment where various host molecules are degraded leading to impairment of tissue homeostasis. Among the hallmarks of neutrophil-rich pathologies is a disrupted epithelium characterized by the loss of cell-cell adhesion and integrity. Epithelial-cadherin (E-cad) represents one of the most important intercellular junction proteins. E-cad exhibits various functions including its role in maintenance of tissue integrity. While much interest has focused on the expression and role of E-cad in different physio- and physiopathological states, proteolytic degradation of this structural molecule and ensuing potential consequences on host lung tissue injury are not completely understood. METHODS: NE capacity to cleave E-cad was determined in cell-free and lung epithelial cell culture systems. The impact of such cleavage on epithelial monolayer integrity was then investigated. Using mice deficient in NE in a clinically relevant experimental model of acute pneumonia, we examined whether degraded E-cad is associated with lung inflammation and injury and whether NE contributes to E-cad cleavage. Finally, we checked for the presence of both degraded E-cad and NE in bronchoalveolar lavage samples obtained from patients with exacerbated COPD, a clinical manifestation characterised by a neutrophilic inflammatory response. RESULTS: We show that NE is capable of degrading E-cad in vitro and in cultured cells. NE-mediated degradation of E-cad was accompanied with loss of epithelial monolayer integrity. Our in vivo findings provide evidence that NE contributes to E-cad cleavage that is concomitant with lung inflammation and injury. Importantly, we observed that the presence of degraded E-cad coincided with the detection of NE in diseased human lungs. CONCLUSIONS: Active NE has the capacity to cleave E-cad and interfere with its cell-cell adhesion function. These data suggest a mechanism by which unchecked NE participates potentially to the pathogenesis of neutrophil-rich lung inflammatory and tissue-destructive diseases.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Caderinas/metabolismo , Células Epiteliais/enzimologia , Elastase de Leucócito/metabolismo , Pulmão/enzimologia , Neutrófilos/enzimologia , Pneumonia Bacteriana/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Antígenos CD , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Elastase de Leucócito/deficiência , Elastase de Leucócito/genética , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Proteólise
13.
J Pathol ; 237(1): 25-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25904364

RESUMO

We have explored the role of the human NANOS3 gene in lung tumour progression. We show that NANOS3 is over-expressed by invasive lung cancer cells and is a prognostic marker for non-small cell lung carcinomas (NSCLCs). NANOS3 gene expression is restricted in testis and brain and is regulated by epigenetic events. It is up-regulated in cultured cells undergoing epithelial - mesenchymal transition (EMT). NANOS3 over-expression in human NSCLC cell lines enhances their invasiveness by up-regulating EMT, whereas its silencing induces mesenchymal - epithelial transition. NANOS3 represses E-cadherin at the transcriptional level and up-regulates vimentin post-transcriptionally. Also, we show that NANOS3 binds mRNAs encoding vimentin and regulates the length of their poly(A) tail. Finally, NANOS3 can also protect vimentin mRNA from microRNA-mediated repression. We thus demonstrate a role for NANOS3 in the acquisition of invasiveness by human lung tumour cells and propose a new mechanism of post-transcriptional regulation of EMT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vimentina/metabolismo , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Transfecção , Vimentina/genética
14.
Lung Cancer ; 87(3): 258-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601486

RESUMO

OBJECTIVES: Nicotine and its associated nicotinic acetylcholine receptors (nAChRs) are believed to be involved in the progression of lung carcinomas. This study aimed at examining the localization of nAChRs in human lung tumours and, by using primary cultures of tumour cells derived from these tumours, determining the nAChR roles in cell proliferation and tumour invasion. MATERIALS AND METHODS: Immunohistochemistry was used to assess nAChR expression in non-small cell lung carcinomas (NSCLC). Primary cultures of tumour cells were established from NSCLC tissue samples and the effects of nicotine and nAChR antagonists on cell proliferation and invasion were assessed. RESULTS: α5, α7, ß2 and ß4 nAChR subunits were expressed in all adenocarcinomas (AC) and squamous cell carcinomas (SCC) tissue samples. In AC, all subunits were identified in glandular structures. In SCC, α5, ß2 and ß4 subunits were essentially identified in tumour cells at invasive fronts, whereas α7 subunit was mainly present in the most differentiated tumour cells and less frequently at invasive fronts. In AC and SCC, there was an inverse distribution of cell proliferation marker Ki-67 and α7 nAChR. Both α7 nAChR and heteromeric nAChRs positively regulated in vitro tumour invasion in NSCLC. Heteromeric nAChRs had a limited activity in regulating tumour cell proliferation in vitro. In contrast, α7 nAChR was a repressor of proliferation in tumour cells isolated from well differentiated NSCLC but mediated the pro-proliferative activity of nicotine in cells isolated from poorly differentiated NSCLC. CONCLUSION: α7 nAChR and heteromeric α5*ß2*ß4* nAChRs play a role in ex vivo tumour progression by stimulating invasion and, depending on the differentiation status of the tumour, by regulating proliferation. Our results suggest that the use of α7 nAChR antagonists to prevent lung cancer progression should be restricted to poorly differentiated tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Nicotínicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Antagonistas Nicotínicos/farmacologia
15.
Mol Cancer Res ; 12(5): 775-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464917

RESUMO

UNLABELLED: In many cancers, including lung carcinomas, Fragile histidine triad (Fhit) is frequently decreased or lost. Fhit status has recently been shown to be associated with elevated in vitro and in vivo invasiveness in lung cancer. Tumor cell invasion is facilitated by epithelial-mesenchymal transition (EMT), a process by which tumor cells lose their epithelial features to acquire a mesenchymal cell-like phenotype. In this study, the mechanism underlying Fhit-regulated EMT was deciphered. Using Slug knockdown, pharmacologic inhibitors PD98059, PP1, and gefitinib as well as an anti-EGFR antibody, it was demonstrated that Fhit silencing in bronchial cells induced overexpression of two primary EMT-associated targets, MMP-9 and vimentin, to regulate cell invasion dependent on an EGFR/Src/ERK/Slug signaling pathway. Moreover, ectopic expression of Fhit in Fhit-deficient lung cancer cells downregulated this pathway. Finally, an inverse correlation was observed between Fhit and phospho-EGFR levels in a cohort of human squamous cell lung carcinoma specimens. These results demonstrate a Fhit-dependent mechanism in the control of EMT-regulated EGFR signaling. IMPLICATIONS: This study adds new insight into the regulatory mechanism of EMT, a process known to increase resistance to conventional and targeted therapies in lung cancer.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Brônquios/citologia , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Quinases da Família src/metabolismo , Brônquios/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail , Transfecção
16.
Lung Cancer ; 81(1): 117-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23562674

RESUMO

Epithelial-to-mesenchymal transition (EMT) is believed to contribute to tumour invasion. Vimentin expression by carcinoma cells is a largely recognized marker of EMT. This study aimed at examining vimentin expression in non small cell lung carcinomas (NSCLC) by immunohistochemistry to evaluate potential correlations between vimentin expression and the differentiation status, the TNM stage and the outcome of the patients. 295 NSCLC including 164 squamous cell carcinomas (SCC), 108 adenocarcinomas (AC) and 23 other NSCLC carcinomas have been examined by immunohistochemistry. Vimentin was indeed detected in 145 cases (49.2%). It was principally present in isolated tumour cells and invasive clusters, particularly in cells at the tumour/stroma interface. Vimentin expression was significantly more expressed in large cell neuroendocrine, adeno-squamous and sarcomatoid carcinomas than in SCC and AC and was significantly associated with the differentiation status of carcinomas. The follow-up of 193 patients further demonstrated that an extensive expression of vimentin (>50% of tumour cells) was associated with the occurrence of metastases. In conclusion, our data demonstrate that vimentin expression is a frequent event in NSCLC and that its expression can be associated with a lack of differentiation and the occurrence of metastases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Vimentina/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Vimentina/análise
17.
Nat Cell Biol ; 13(6): 693-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21602795

RESUMO

Multiciliated cells lining the surface of some vertebrate epithelia are essential for various physiological processes, such as airway cleansing. However, the mechanisms governing motile cilia biosynthesis remain poorly elucidated. We identify miR-449 microRNAs as evolutionarily conserved key regulators of vertebrate multiciliogenesis. In human airway epithelium and Xenopus laevis embryonic epidermis, miR-449 microRNAs strongly accumulated in multiciliated cells. In both models, we show that miR-449 microRNAs promote centriole multiplication and multiciliogenesis by directly repressing the Delta/Notch pathway. We established Notch1 and its ligand Delta-like 1(DLL1) as miR-449 bona fide targets. Human DLL1 and NOTCH1 protein levels were lower in multiciliated cells than in surrounding cells, decreased after miR-449 overexpression and increased after miR-449 inhibition. In frog, miR-449 silencing led to increased Dll1 expression. Consistently, overexpression of Dll1 mRNA lacking miR-449 target sites repressed multiciliogenesis, whereas both Dll1 and Notch1 knockdown rescued multiciliogenesis in miR-449-deficient cells. Antisense-mediated protection of miR-449-binding sites of endogenous human Notch1 or frog Dll1 strongly repressed multiciliogenesis. Our results unravel a conserved mechanism whereby Notch signalling must undergo miR-449-mediated inhibition to permit differentiation of ciliated cell progenitors.


Assuntos
Cílios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Sobrevivência Celular , Células Cultivadas , Sequência Conservada , Epiderme/metabolismo , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Pólipos Nasais/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenopus/embriologia , Proteínas de Xenopus/genética
18.
Cancer Res ; 70(19): 7710-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20841469

RESUMO

Loss of NM23-H1 expression correlates with the degree of metastasis and with unfavorable clinical prognosis in several types of human carcinoma. However, the mechanistic basis for the metastasis suppressor function of NM23-H1 is obscure. We silenced NM23-H1 expression in human hepatoma and colon carcinoma cells and methodologically investigated effects on cell-cell adhesion, migration, invasion, and signaling linked to cancer progression. NM23-H1 silencing disrupted cell-cell adhesion mediated by E-cadherin, resulting in ß-catenin nuclear translocation and T-cell factor/lymphoid-enhancing factor-1 transactivation. Further, NM23-H1 silencing promoted cellular scattering, motility, and extracellular matrix invasion by promoting invadopodia formation and upregulating several matrix metalloproteinases (MMP), including membrane type 1 MMP. In contrast, silencing the related NM23-H2 gene was ineffective at promoting invasion. NM23-H1 silencing activated proinvasive signaling pathways involving Rac1, mitogen-activated protein kinases, phosphatidylinositol 3-kinase (PI3K)/Akt, and src kinase. Conversely, NM23-H1 was dispensable for cancer cell proliferation in vitro and liver regeneration in NM23-M1 null mice, instead inducing cellular resistance to chemotherapeutic drugs in vitro. Analysis of NM23-H1 expression in clinical specimens revealed high expression in premalignant lesions (liver cirrhosis and colon adenoma) and the central body of primary liver or colon tumors, but downregulation at the invasive front of tumors. Our findings reveal that NM23-H1 is critical for control of cell-cell adhesion and cell migration at early stages of the invasive program in epithelial cancers, orchestrating a barrier against conversion of in situ carcinoma into invasive malignancy.


Assuntos
Junções Aderentes/genética , Nucleosídeo NM23 Difosfato Quinases/genética , Neoplasias/genética , Actinas/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Junções Aderentes/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Inativação Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 14 da Matriz/metabolismo , Nucleosídeo NM23 Difosfato Quinases/biossíntese , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Wnt/metabolismo
19.
Respir Res ; 11: 6, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089165

RESUMO

BACKGROUND: Staphylococcus aureus releases virulence factors (VF) that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting beta2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal) combined with a corticosteroid (fluticasone propionate, FP) was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. METHODS: A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. RESULTS: When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S) and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFalpha. CONCLUSIONS: Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting beta2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of beta2 adrenergic receptor agonist and glucocorticoid.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2 , Albuterol/análogos & derivados , Androstadienos/administração & dosagem , Mucosa Respiratória/microbiologia , Mucosa Respiratória/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Combinação Fluticasona-Salmeterol , Humanos , Mucosa Respiratória/efeitos dos fármacos
20.
Crit Rev Oncol Hematol ; 69(2): 144-52, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18657992

RESUMO

Live-cell imaging has become a powerful analytical tool in most cell biology laboratories. The scope of this paper is to give an overview of the environmental considerations for maintaining living cells on the microscope stage and the technical advances permitting multi-parameter imaging. The paper will then focus on two-dimensional and three-dimensional analysis of cell dispersion and migration and finally give a brief insight on computational modeling of the cell behavior.


Assuntos
Movimento Celular/fisiologia , Células/ultraestrutura , Imageamento Tridimensional , Microscopia de Vídeo , Animais , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...