Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Microb Sci ; 6: 100229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525307

RESUMO

Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.

2.
J Environ Manage ; 354: 120261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354608

RESUMO

The future of reactive nitrogen (N) for subtropical lowland rice to be characterised under diverse N-management to develop adequate sustainable practices. It is a challenge to increase the efficiency of N use in lowland rice, as N can be lost in various ways, e.g., through nitrous oxide (N2O) or dinitrogen (N2) emissions, ammonia (NH3) volatilization and nitrate (NO3-) leaching. A field study was carried out in the subsequent wet (2021) and dry (2022) seasons to assess the impacts of different N management strategies on yield, N use efficiency and different N losses in a double-cropped rice system. Seven different N-management practices including application of chemical fertilisers, liquid organic fertiliser, nitrification inhibitors, organic nutrient management and integrated nutrient management (INM) were studied. The application of soil test-based neem-coated urea (NCU) during the wet season resulted in the highest economic yield, while integrated nutrient management showed the highest economic yield during the dry season. Total N losses by volatilization of NH3, N2O loss and leaching were 0.06-4.73, 0.32-2.14 and 0.25-1.93 kg ha-1, corresponding to 0.06-5.84%, 0.11-2.20% and 0.09-1.81% of total applied N, respectively. The total N-uptake in grain and straw was highest in INM (87-89% over control) followed by the soil test-based NCU (77-82% over control). In comparison, recovery efficiency of N was maximum from application of NCU + dicyandiamide during both the seasons. The N footprint of paddy rice ranged 0.46-2.01 kg N-eq. t-1 during both seasons under various N management. Ammonia volatilization was the process responsible for the largest N loss, followed by N2O emissions, and NO3- leaching in these subtropical lowland rice fields. After ranking the different N management practices on a scale of 1-7, soil test-based NCU was considered the best N management approach in the wet year 2021, while INM scored the best in the dry year 2022.


Assuntos
Oryza , Nitrogênio/análise , Agricultura/métodos , Amônia/análise , Solo , Fertilizantes/análise , Óxido Nitroso/análise
3.
Environ Sci Pollut Res Int ; 30(53): 113660-113673, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851247

RESUMO

Arsenic (As) is a well-known human carcinogen, and the consumption of rice is the main pathway for the South Asian people. The study evaluated the impact of the amendments involving CaSiO3, SiO2 nanoparticles, silica solubilizing bacteria (SSB), and rice straw compost (RSC) on mitigation of As toxicity in rice. The translocation of As from soil to cooked rice was tracked, and the results showed that RSC and its combination with SSB were the most effective in reducing As loading in rice grain by 53.2%. To determine the risk of dietary exposure to As, the average daily intake (ADI), hazard quotient (HQ), and incremental lifetime cancer risk (ILCR) were computed. The study observed that the ADI was reduced to one-third (0.24 µg kg-1bw) under RSC+SSB treatments compared to the control. An effective prediction model was established using random forest model and described the accumulation of As by rice grains depend on bioavailable As, P, and Fe which explained 48.5, 5.07%, and 2.6% of the variation in the grain As, respectively. The model anticipates that to produce As benign rice grain, soil should have P and Fe concentration more than 30 mg kg-1 and 12 mg kg-1, respectively if soil As surpasses 2.5 mg kg-1.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Humanos , Arsênio/análise , Dióxido de Silício/metabolismo , Oryza/metabolismo , Solo , Grão Comestível/química , Medição de Risco , Poluentes do Solo/análise
4.
Environ Monit Assess ; 195(9): 1099, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632560

RESUMO

Mitigating the atmospheric greenhouse effect while enhancing the inherent soil quality and productive capacity is possible through soil carbon (C) sequestration, which has a significant potential to counteract the adverse effects of agroecosystem level C emission through natural and anthropogenic means. Although rice is the most important food in India, feeding more than 60% of the country's population, it is commonly blamed for significant methane (CH4) emissions that accelerate climate change. Higher initial soil organic matter concentrations would create more CH4 under the flooded soil conditions, as reducible soil C is a prerequisite for CH4 generation. In India, rice is generally cultivated in lowlands under continuous flooding. Less extensive organic matter breakdown in lowland rice agroecosystems often significantly impacts the dynamics of soil active and passive C pools. Change from conventional to conservation agriculture might trap a significant quantity of SOC. The study aims to investigate the potential of rice-based soils to sequester C and reduce the accelerated greenhouse effects through modified farming practices, such as crop residue retention, crop rotation, organic farming, varietal selection, conservation agriculture, integrated nutrient management, and water management. Overall, lowland rice agroecosystems can sequester significant amounts of SOC, but this potential must be balanced against the potential for CH4 emissions. Management practices that reduce CH4 emissions while increasing soil C sequestration should be promoted and adopted to maximize the sustainability of rice agroecosystems. This review is important for understanding the effectiveness of the balance between SOC sequestration and CH4 emissions in lowland rice agroecosystems for adopting sustainable agricultural practices in the context of climate change.


Assuntos
Oryza , Solo , Carbono , Sequestro de Carbono , Monitoramento Ambiental , Metano
5.
Mar Environ Res ; 191: 106147, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611376

RESUMO

The estuaries provide the key pathway for travelling carbon across the land-ocean interfaces and behave as both source and sink of greenhouse gases (GHGs) in water-atmosphere systems. The sink-source characteristics of estuaries for GHGs vary spatially. The primary driving factors are adjacent ecologies (agriculture, aquaculture, etc.) and proximities to the sea. To study the sink-source characteristics of estuaries for GHGs (methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)), the water samples were collected from 53 different locations in the estuaries for estimation of dissolved GHGs concentration and air-water GHGs exchanges. The locations represent five zones (Zone I, II, III, IV and V) based on the type and degradation status of mangroves (degraded and undisturbed), anthropogenic activities, and distance from the sea. Zone I, III, V represents to the degraded mangroves far from sea, whereas, Zone II, IV surrounded by undisturbed mangroves and nearer to sea. The average dissolved CH4 concentrations were higher in the estuaries which were adjacent to degraded mangroves (154.4 nmol L-1) than undisturbed mangroves (81.7 nmol L-1). Further, the average dissolved N2O concentrations were 48% higher in the estuaries nearer to degraded mangroves than that of undisturbed ones. Among the degraded mangrove sites, the dissolved CO2 concentrations were higher at Zone I (30.1 µmol L-1) followed by Zone III and IV, whereas in undisturbed sites, it was higher in Zone IV (22.3 µmol L-1) than Zone II (17.6 µmol L-1). Among the 53 locations, 36, 51 and 33 locations acted as a sink (negative value of exchanges) for CH4, N2O and CO2, respectively. The higher sink potential for CH4 was recorded to those estuaries adjacent to undisturbed mangroves (-791.69 µmol m-2 d-1) than the degraded ones (-23.18 µmol m-2 d-1). Similarly, the average air-water N2O and CO2 exchanges were more negative in the estuaries which were nearer to undisturbed mangroves indicating higher sink potential. The pH, and salinity of the estuary water were negatively correlated with air-water CH4 and N2O exchanges, whereas those were positively correlated with CO2 exchanges. Significantly lower dissolved GHGs and air-water GHGs exchange was observed in the estuaries adjacent to the undisturbed mangrove as compared to the degraded mangrove. The reason behind higher sink behaviours of estuaries nearer to undisturbed mangroves are higher intrusion of seawater, less nutrient availability, higher salinity, low carbon contents and alkaline pH compared to estuaries adjacent to degraded mangroves and far from sea.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Estuários , Áreas Alagadas , Dióxido de Carbono/análise , Monitoramento Ambiental , Água , Metano/análise , Índia
6.
Fungal Biol ; 127(6): 1053-1066, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344007

RESUMO

Pulse crop rotation in rice cultivation is a widely accepted agronomic practice. Depending upon the water regime, rice cultivation has been classified into wetland and aerobic practices. However, no studies have been conducted so far to understand the impact of pulse crop rotation and rice mono-cropping on fungal diversity, particularly in aerobic soil. A targeted metagenomic study was conducted to compare the effects of crop rotations (rice-rice and rice-pulse) on fungal diversity in wetland and aerobic rice soils. Out of 445 OTUs, 41.80% was unknown and 58.20% were assigned to six phyla, namely Ascomycota (56.57%), Basidiomycota (1.32%), Zygomycota (0.22%), Chytridiomycota (0.04%), Glomeromycota (0.03%), and Blastocladiomycota (0.02%). Functional trait analysis found wetland rice-pulse rotation increased symbiotrophs (36.7%) and saprotrophs (62.1%) population, whereas higher pathotrophs were found in aerobic rice-rice (62.8%) and rice-pulse (61.4%) cropping system. Certain soil nutrients played a major role in shaping the fungal community; Ca had significant (p < 0.05) positive impact on saprotroph, symbiotroph and endophytes, whereas Cu had significant (p < 0.05) negative impact on pathotrophs. This study showed that rice-pulse crop rotation could enhance the saprophytic and symbiotic fungal diversity in wetland and reduce the population of pathogens in aerobic rice cultivation.


Assuntos
Ascomicetos , Oryza , Solo , Áreas Alagadas , Produção Agrícola , Microbiologia do Solo
7.
Life (Basel) ; 13(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37240763

RESUMO

The prominence of arbuscular mycorrhizal fungi (AMF) in sustainable rice production has long been recognized. However, there is little information about AMF response in aerobic rice cultivation under phosphorus (P)-deficient conditions. The aim of this experiment was to compare and determine the preeminent AMF effects on rice mycorrhizal colonization, responsiveness, P utilization, and different growth-promoting traits under P-deficient conditions. Different AMF genera viz. (Funneliformis sp., Rhizophagus sp., Glomus sp., Acaulospora sp., and Claroideoglomus sp.) in four different aerobic rice varieties developed by ICAR-NRRI, India (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207) were investigated using the check P-susceptible variety (IR 36) and the P-tolerant variety (Kasalath IC459373). Data analyzed through linear modeling approaches and bivariate associations found that AMF colonization was highly correlated with soil enzymes, particularly fluorescein diacetate (FDA) and plant P uptake. The microbial biomass carbon (MBC) and FDA content were significantly changed among rice varieties treated with AMF compared to uninoculated control. Out of four different rice varieties, CR Dhan 207 inoculated with AMF showed higher plant P uptake compared to other varieties. In all the rice varieties, AMF colonization had higher correlation coefficients with soil enzymes (FDA), MBC, and plant P uptake than uninoculated control. The present study indicates that AMF intervention in aerobic rice cultivation under P-deficient conditions significantly increased plant P uptake, soil enzymes activities and plant growth promotion. Thus, the information gathered from this study will help us to develop a viable AMF package for sustainable aerobic rice cultivation.

8.
Environ Monit Assess ; 195(4): 495, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947215

RESUMO

Fluoride (F) in agricultural soil is increasing continuously due to injudicious application of F-laden fertilizers, causing global concern about fluorosis disease. The objective of the study was to assess F risk in humans due to soil ingestion, dermal contact, and particulate inhalation during various agricultural activities. The study also emphasized chemical fractionation, distribution, and geochemical understanding of high F incidence. Agricultural surface soil was sampled randomly from 5 km × 5 km square grids besides soil profile samples for studying the vertical distribution of F. Various F fractions in soil (1:1 soil:water ratio, calcium chloride extractable F, hot water soluble F, exchangeable F, Fe-Mn oxide bound F, organic matter bound F, residual F, and total F) were estimated using the sequential fractionation method. Multivariate geochemical analysis and soil F risk were also assessed in humans. The water soluble F (F1:1) and CaCl2 extractable F (FCa) varied between 0.11 to 6.73 mg kg-1 and 1.02 to 6.94 mg F kg-1 soil, respectively. Total fluoride (TF) however, ranged between 115 to 456 mg F kg-1. A higher average of FCa/TF moving down the soil profile indicated a propensity for F endemicity. Weathering, ion-exchange, alkalinity, and clay were found to control the soil geochemistry of the area. The F contamination index explained > 82% variance of F contamination, but the hazard quotient of F for an adult was found < 1, indicating no potential fluorosis risk in the area. This study is the first of its kind in India, where ecological risk due to F from agricultural soil was assessed in humans and will be a benchmark for future researchers.


Assuntos
Poluentes do Solo , Solo , Humanos , Adulto , Fluoretos/análise , Monitoramento Ambiental/métodos , Agricultura , Poluentes do Solo/análise , Medição de Risco
9.
Plant Physiol Biochem ; 196: 103-120, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706690

RESUMO

The current review aims to gain knowledge on the biosynthesis and characterization of nanoparticles (NPs), their multifactorial role, and emerging trends of NPs utilization in modern science, particularly in sustainable agriculture, for increased yield to solve the food problem in the coming era. However, it is well known that an environment-friendly resource is in excessive demand, and green chemistry is an advanced and rising resource in exploring eco-friendly processes. Plant extracts or other resources can be utilized to synthesize different types of NPS. Hence NPs can be synthesized by organic or inorganic molecules. Inorganic molecules are hydrophilic, biocompatible, and highly steady compared to organic types. NPs occur in numerous chemical conformations ranging from amphiphilic molecules to metal oxides, from artificial polymers to bulky biomolecules. NPs structures can be examined by different approaches, i.e., Raman spectroscopy, optical spectroscopy, X-ray fluorescence, and solid-state NMR. Nano-agrochemical is a unification of nanotechnology and agro-chemicals, which has brought about the manufacture of nano-fertilizers, nano-pesticides, nano-herbicides, nano-insecticides, and nano-fungicides. NPs can also be utilized as an antimicrobial solution, but the mode of action for antibacterial NPs is poorly understood. Presently known mechanisms comprise the induction of oxidative stress, the release of metal ions, and non-oxidative stress. Multiple modes of action towards microbes would be needed in a similar bacterial cell for antibacterial resistance to develop. Finally, we visualize multidisciplinary cooperative methods will be essential to fill the information gap in nano-agrochemicals and drive toward the usage of green NPs in agriculture and plant science study.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanopartículas/química , Agricultura/métodos , Nanotecnologia , Antibacterianos , Medição de Risco , Nanopartículas Metálicas/química
10.
Environ Res ; 220: 115098, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586716

RESUMO

Cadmium (Cd), a major contaminant of concern, has been extensively reviewed and debated for its anthropogenic global shifts. Cadmium levels in rice grains raise wide food safety concerns. The aim of this review is therefore to capture the dynamics of Cd in paddy soil, translocation pathways of Cd from soil to consumption rice, and assess its bio-accessibility in human consumption. In crop plants, Cd reduces absorption of nutrients and water, triggers oxidative stress, and inhibits plant metabolism. Understanding the mechanisms and behaviour of Cd in paddy soil and rice allows to explain, predict and intervene in Cd transferability from soil to grains and human exposure. Factors affecting Cd movement in soil, and further to rice grain, are elucidated. Recently, physiological and molecular understanding of Cd transport in rice plants have been advanced. Morphological-biochemical characteristics and Cd transporters of plants in such a movement were also highlighted. Ecologically viable remediation approaches, including low input cost agronomic methods, phytoremediation and microbial bioremediation methods, are emerging.


Assuntos
Oryza , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Oryza/química , Solo/química , Agricultura , Biodegradação Ambiental , Poluentes do Solo/análise
11.
Sci Total Environ ; 806(Pt 2): 150451, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607097

RESUMO

Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Agricultura , Celulose , Polissacarídeos
12.
Curr Res Microb Sci ; 2: 100035, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841326

RESUMO

This study addresses the plant beneficial enterobacteria present in rice rhizosphere and their efficiency for enhancing nitrogen uptake in rice plant. Using culturable approaches, the population of total diazotrophs present in rhizosphere samples collected from different organic rice fields of Sikkim were studied and recorded in the range between 4.62 to 4.97 log 10 CFU/g soil. All the isolated commonly occurred diazotrophic bacterial isolates were screened based on their ability to fix nitrogen in milligram per gram of sugar consumed under in-vitro condition with the reference check. In addition to nitrogen fixation, plant growth promoting traits such as production of indole-3-acetic acid and gibberellic acid were estimated using spectrophotometric approaches and compared against Bacillus subtilis as reference multi-potent plant growth promoting strain. In-vivo evaluation of these diazotrophic species in rice found improvement in both above and below ground responses in rice plant evaluated by estimating changes in chlorophyll concentration, plant biomass, root architecture, nitrogen uptake, microbial biomass and associated biochemical activity of soil. Further, the selected isolates were identified through DNA targeted analysis of 16S rRNA gene present in diazotrophs and which identified that the isolates belonged to the Enterobacter genus. Statistical models were prepared for deciphering the dynamics of plant growth improvement due to selective enrichment of rhizosphere bacteria and found significant (p<0.05) correlation between soil and plant parameters. This study concludes that Enterobacter spp. present in organic paddy soils of Sikkim having good nitrogen fixing abilities and whose selective enrichment in rhizosphere improved nitrogen uptake and plant growth promotion in rice plant.

13.
Curr Res Microb Sci ; 2: 100067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34841357

RESUMO

To prevent weed invasion in direct seeded rice cultivation, several new generation post emergence herbicides viz. bispyribac sodium, flucetosulfuron, ethoxysulfuron, fenoxaprop-p ethyl, penoxsulam, fenoxaprop-p-ethyl plus ethoxysulfuron and cyhalofop­butyl plus penoxsulam are widely used in sub-tropical rice ecosystems of Eastern India. The main objective of this study was to know whether application of above listed post emergence herbicides at recommended (n1) and double recommended dose (n2) has any negative impact on arbuscular mycorrhizal fungal (AMF) association in rice plants. Further, the effects of herbicides on soil microbial properties viz. microbial biomass carbon (MBC), fluroscein diacetate (FDA), dehydrogenase (DHA), acid phosphatase (AcP) and alkaline phosphatase (AkP) activities were analyzed using unsupervised and supervised learning methods. Results indicated that among different herbicides evaluated only application of penoxsulam significantly (p<0.05) reduced the AMF root colonization (58.0%) at recommended dose (n1) compared to only AMF (70.3%) application. Whereas, application of bispyribac sodium (both n1 and n2 dose) enhanced AMF sporulation (1100 spores/100 g) and root colonization (86.68%) compared to other herbicides application. Unsupervised learning approaches through PCA found that application of bispyribac sodium enhanced both above ground plant growth responses and soil microbial properties, but penoxsulam had negative impact. But, the combined application of penoxsulam and cyhalofop­butyl did not show any negative impact on AMF association in rice plants. This study concluded that selection of right type of post-emergence herbicides are very important to minimize the harmful effect or enhance AMF association in rice plants.

14.
Sci Rep ; 11(1): 13563, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193908

RESUMO

To better understand the early response of genotypes to limited-phosphorus (P) conditions and the role of the phosphate transporter OsPHT1 gene family in the presence of PSTOL1, it is essential to characterize the level of tolerance in rice under limited-P conditions. In the present experiment, six rice genotypes were studied in three-way interactions [genotype (G) × phosphorus (P) × duration (D)] by comparing them at two instances (14 d and 28 d) under seven different concentrations of P (0.5‒10.0 ppm) in a hydroponic system. Trait differences and interactions of these traits were clearly distinguished among the various P rates. However, aboveground trait expression registered increased growth from 6.0 to 10.0 ppm of P. The major root-attributed traits in 0.5 ppm of P are significantly increased vis-à-vis 10 ppm of P. Analysis of variance displayed a significant difference between the genotypes for PSTOL1 and PHT1 expression. In low P, maximum root length with a shoot and root dry weight was observed in a new indigenous accession, IC459373, with higher expression of PSTOL1 than in Dular and IR64-Pup1 in 0.5 ppm of P at 14 d. Among the 13 PHT1 genes, OsPT1, OsPT2, OsPT6, and OsPT13 showed significant upregulation in IC459373, Dular, and IR64-Pup1. These results indicated that studying the expression levels of the PSTOL1 and PHT1 gene family at the early growth stages would be helpful in identifying superior donors to improve low-P tolerance and P-use efficiency in rice breeding programs.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Transporte de Fosfato , Fósforo/metabolismo , Proteínas de Plantas , Locos de Características Quantitativas , Perfilação da Expressão Gênica , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Transporte de Fosfato/biossíntese , Proteínas de Transporte de Fosfato/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
15.
Environ Sci Pollut Res Int ; 27(17): 21000-21012, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253697

RESUMO

The levels of trace elements (As, Hg, Cr, Cd, Pb, Co, Ni, Cu, Mn and Zn) in commercially important fish species sampled from fish markets of Adelaide, Australia; canned fish from South Australian supermarkets; and fish markets of West Bengal, India were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Mercury was determined by using triple quadrupole ICP-MS. The accuracy of the methods was assessed with a certified standard reference material (NRCC-DORM-3 dogfish protein), and the results were compared with values reported in the literature. The results indicated considerable variations in the accumulation of trace elements among the fish species. The relationship between species with respect to trace element concentrations was examined using cluster analysis, which showed Indian fish species forming distinct groups from the others. Other than As in sardines, whiting and snapper and Hg in swordfish and snapper, the trace element concentrations were within permissible limits recommended by various standards. Based on the estimated daily intake (EDI), fish samples analysed in this study can be considered safe for human consumption as per the recommended daily dietary allowance limit fixed by various agencies. Continuous monitoring and assessments of fish metal(loid) content are needed to generate more data and safeguard human health.


Assuntos
Oligoelementos/análise , Animais , Austrália , Peixes , Humanos , Índia , Músculos/química
16.
J Basic Microbiol ; 59(12): 1217-1228, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31613012

RESUMO

Arbuscular mycorrhizal fungi (AMF), particularly the Glomerales group, play a paramount role in plant nutrient uptake, and abiotic and biotic stress management in rice, but recent evidence revealed that elevated CO2 concentration considerably reduces the Glomerales group in soil. In view of this, the present study was initiated to understand the interaction effect of native Glomerales species application in rice plants (cv. Naveen) under elevated CO2 concentrations (400 ± 10, 550 ± 20, and 700 ± 20 ppm) in open-top chambers. Three different modes of application of the AMF inoculum were evaluated, of which, combined application of AMF at the seedling production and transplanting stages showed increased AMF colonization, which significantly improved grain yield by 25.08% and also increased uptake of phosphorus by 18.2% and nitrogen by 49.5%, as observed at 700-ppm CO2 concentration. Organic acids secretion in rice root increased in AMF-inoculated plants exposed to 700-ppm CO2 concentration. To understand the overall effect of CO2 elevation on AMF interaction with the rice plant, principal component and partial least square regression analysis were performed, which found both positive and negative responses under elevated CO2 concentration.


Assuntos
Dióxido de Carbono/farmacologia , Glomeromycota/efeitos dos fármacos , Glomeromycota/fisiologia , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Oryza/microbiologia , Simbiose/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/análise , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo/química , Esporos Fúngicos/fisiologia
17.
Environ Monit Assess ; 191(9): 550, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31396767

RESUMO

A field experiment was conducted at Indian Council of Agricultural Research-National Rice Research Institute, Cuttack, Odisha, India in the dry seasons of 2015 and 2016 to assess the water vapor flux (FH2O) and its relationship with other climatic variables. The FH2O and climatic variables were measured by an eddy covariance system and a micrometeorological observatory. Daily mean FH2O during the dry seasons of 2015 and 2016 were 0.009-0.092 g m-2 s-1 and 0.014-0.101 g m-2 s-1, respectively. Seasonal average FH2O was 14.6% higher in 2016 than that in 2015. Diurnal variation for FH2O showed a bell-shaped curve with its peak at 13:30-14:00 Indian Standard Time (IST) in both the years. Carbon dioxide flux was found higher with rise in FH2O. This relationship was stronger at higher vapor pressure deficit (VPD) (20 ≤ VPD ≤ 40 and VPD > 40 hPa). The FH2O showed significant positive correlation with latent heat flux, net radiation flux, photosynthatically active radiation, air, water and soil temperatures, shortwave down and upwell radiations, maximum and minimum temperatures, evaporation, and relative humidity in both the years. Principal component analysis showed that FH2O was very close to latent heat flux in both the years (Pearson correlation coefficient close to 1). The two-dimensional observation map of the principal component F1 and F2 showed the observations taken during the vegetative stage and panicle initiation stage, and flowering stage and maturity stage were closer to each other. It can be concluded that the most important climatic variables controlling the FH2O were latent heat of vaporization, net radiation, air temperature, soil temperatures, and water temperature.


Assuntos
Ciclo do Carbono/fisiologia , Monitoramento Ambiental/métodos , Oryza/química , Vapor/análise , Agricultura , Dióxido de Carbono/análise , Ecossistema , Índia , Análise de Componente Principal , Estações do Ano , Solo/química , Temperatura , Água/química
18.
J Basic Microbiol ; 59(10): 963-978, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31410860

RESUMO

The diversity of cellulolytic bacteria from the rice-pulse system can be sourced for identification of efficient cellulose decomposing microbial strains. In the present study, the abundance, structural diversity, and cellulolytic potential of the culturable bacterial community were studied in 5-year old rice-pulse system under different resource conservation technologies. Higher cellulose (68% more) and xylanase (35% more) activities were observed under zero tilled soil. The populations of cellulolytic bacteria were significantly higher (44%) in zero tillage (ZT) treatment than those of conventional practice. Results revealed that the cellulolytic bacterial diversity was found to be significantly higher under ZT practice, but the present population may not be sufficient for effective recycling of organic wastes in this system. Out of 290 bacterial isolates, 20 isolates had significantly higher cellulolytic activities, of which the top three superior isolates were received from ZT practice. The cellulolytic bacterial diversity based on 16S rDNA sequencing data revealed that the Firmicutes was the most dominant phyla and the Bacillus spp. were the common genus, the observation also showed that there were 17 different haplotypes were recorded among 20 isolates of cellulolytic bacteria. The present findings indicated that long-term ZT in the rice-pulse system could be a unique source for efficient cellulose decomposing bacteria and further the efficient bacterial strains isolated from this system can be used as efficient bioinoculants for in situ as well as ex-situ decomposition of rice straw particularly in conservation agriculture.


Assuntos
Bactérias/metabolismo , Biodiversidade , Celulose/metabolismo , Oryza/microbiologia , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Celulose/análise , Conservação dos Recursos Naturais , Haplótipos , Consórcios Microbianos/genética , Oryza/química , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
19.
Physiol Mol Biol Plants ; 24(6): 1047-1058, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30425422

RESUMO

The present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study. Further, fertilizer enriched soil was partially substituted by gravels for stabilization and maintaining the uniformity of soil EC in pots without hindering its buffering capacity. The protocol including modified medium (Soil:Stone, 4:1) at 8 dS m-1 salinity level was validated using seven different genotypes possessing differential salt sensitivity. Based on the important selection traits such as high stability index for plant yield, harvest index and number of grains/panicle and also high K+ concentration and low Na+- K+ ratio in flag leaf at grain filling stage were validated and employed in the evaluation of a mapping population in the modified screening medium. The method was found significantly efficient for easy maintenance of desired level of soil salinity and identification of genotypes tolerant to salinity at reproductive stage.

20.
Environ Monit Assess ; 190(7): 423, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938374

RESUMO

Lowland tropical rice-rice system has a unique micrometrological characteristic that affects both energy component and net ecosystem energy. Periodic and seasonal variations of methane (CH4), carbon dioxide (CO2), and energy exchange from irrigated lowland rice-rice ecosystem were studied using open-path eddy covariance (EC) system during the dry (DS) and wet (WS) seasons in 2015. Concurrently, the manual chamber method was employed in nitrous oxide (N2O) measurement efflux. Cumulative net ecosystem carbon exchange (NEE) was observed highest (- 232.55 g C m-2) during the WS and lowest (- 14.81 g C m-2) during wet fallow (WF). Similarly, the cumulative net ecosystem methane exchange (NEME) was found highest (13,456.5 mg CH4 m-2) during the WS and lowest (2014.3 mg CH4 m-2) during the WF. Surface energy fluxes, i.e., sensible (Hs) and latent heat (LE) fluxes, showed a similar trend. With the advancement of time, the ratio of ecosystem respiration (Re) and gross primary production (GPP) increased. The cumulative global warming potential (GWP) for the two cropping seasons including two fallows was 13,224.1 kg CO2 equivalent ha-1. The GWP and NEME showed a similar trend as soil enzymes and labile carbon pools in both seasons (except GWP at the harvesting stage in the wet season). The mean NEE exhibited a more negative value with decrease in labile pools from panicle initiation to harvesting stage in the WS. Soil labile C and soil enzymes can be used as an indicator of NEE, NEME, and GWP in lowland rice ecology. Graphical abstract Schematic presentation of GHG emission and energy exchange in lowland rice.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Carbono , Dióxido de Carbono/análise , Ecossistema , Aquecimento Global , Metano/análise , Óxido Nitroso/análise , Oryza , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...