Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107660

RESUMO

Seed vigor is the key performance parameter of good quality seed. A panel was prepared by shortlisting genotypes from all the phenotypic groups representing seedling growth parameters from a total of 278 germplasm lines. A wide variation was observed for the traits in the population. The panel was classified into four genetic structure groups. Fixation indices indicated the existence of linkage disequilibrium in the population. A moderate to high level of diversity parameters was assessed using 143 SSR markers. Principal component, coordinate, neighbor-joining tree and cluster analyses showed subpopulations with a fair degree of correspondence with the growth parameters. Marker-trait association analysis detected eight novel QTLs, namely qAGR4.1, qAGR6.1, qAGR6.2 and qAGR8.1 for absolute growth rate (AGR); qRSG6.1, qRSG7.1 and qRSG8.1 for relative shoot growth (RSG); and qRGR11.1 for relative growth rate (RGR), as analyzed by GLM and MLM. The reported QTL for germination rate (GR), qGR4-1, was validated in this population. Additionally, QTLs present on chromosome 6 controlling RSG and AGR at 221 cM and RSG and AGR on chromosome 8 at 27 cM were detected as genetic hotspots for the parameters. The QTLs identified in the study will be useful for improvement of the seed vigor trait in rice.


Assuntos
Oryza , Plântula , Plântula/genética , Germinação/genética , Oryza/genética , Locos de Características Quantitativas/genética , Genômica
2.
PLoS One ; 17(7): e0267303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881571

RESUMO

High seed vigour ensures good quality seed and higher productivity. Early seedling growth parameters indicate seed vigour in rice. Seed vigour via physiological growth parameters is a complex trait controlled by many quantitative trait loci. A panel was prepared representing a population of 274 rice landraces by including genotypes from all the phenotypic groups of sixseedling stage physiological parameters including germination % for association mapping. Wide variations for the six studiedtraits were observed in the population. The population was classified into 3 genetic groups. Fixation indices indicated the presence of linkage disequilibrium in the population. The population was classified into subpopulations and each subpopulation showed correspondence with the 6 physiological traits. A total of 5 reported QTLs viz., qGP8.1 for germination % (GP); qSVII2.1, qSVII6.1 and qSVII6.2 for seed vigour index II (SVII), and qRSR11.1 for root-shoot ratio (RSR) were validated in this mapping population. In addition, 13 QTLs regulating the physiological parameters such as qSVI 11.1 for seed vigour index I; qSVI11.1 and qSVI12.1 for seed vigour index II; qRRG10.1, qRRG8.1, qRRG8.2, qRRG6.1 and qRRG4.1 for rate of root growth (RRG); qRSR2.1, qRSR3.1 and qRSR5.1 for root-shoot ratio (RSR) while qGP6.2 and qGP6.3 for germination %were identified. Additionally, co-localization or co-inheritance of QTLs, qGP8.1 and qSVI8.1 for GP and SVI-1; qGP6.2 and qRRG6.1 for GP and RRG, and qSVI11.1 and qRSR11.1 for SVI and RSR were detected. The QTLs identified in this study will be useful for improvement of seed vigour trait in rice.


Assuntos
Germinação , Oryza , Genômica , Germinação/genética , Oryza/genética , Locos de Características Quantitativas/genética , Plântula , Sementes/genética
3.
Front Immunol ; 11: 584310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117399

RESUMO

Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM's role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Uteroglobina/imunologia , Uteroglobina/metabolismo , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo/imunologia , Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
4.
BMC Genet ; 21(1): 76, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664865

RESUMO

BACKGROUND: Drought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important. RESULTS: QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F7 recombinant inbred lines (RIL) mapping population of CR 143-2-2 and Krishnahamsa. Wide variations were observed in the estimates of ten physiological traits studied under the drought stress. The RIL population was genotyped using the bulk- segregant analysis (BSA) approach. A total of 77 SSR polymorphic markers were obtained from the parental polymorphisms survey of 401 tested primers. QTL analysis using inclusive composite interval mapping detected a total of three QTLs for the physiological traits namely relative chlorophyll content (qRCC1.1), chlorophyll a (qCHLa1.1), and proline content (qPRO3.1) in the studied RIL population. The QTL, qPRO3.1 is found to be a novel one showing LOD value of 13.93 and phenotypic variance (PVE) of 78.19%. The QTL was located within the marker interval of RM22-RM517 on chromosome 3. Another novel QTL, qRCC1.1 was mapped on chromosome 1 at a distance of 142.8 cM and found to control relative chlorophyll content during terminal drought stress. A third novel QTL was detected in the population that controlled chlorophyll a content (qCHLa1.1) under the terminal stress period. The QTL was located on chromosome 1 at a distance of 81.8 cM and showed 64.5% phenotypic variation. CONCLUSIONS: The three novel QTLs, qRCC1.1, qCHLa1.1 and qPRO3.1 controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143-2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice.


Assuntos
Desidratação/genética , Secas , Oryza/genética , Locos de Características Quantitativas , Água/fisiologia , Clorofila A/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Fenótipo
5.
BMC Plant Biol ; 19(1): 352, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412781

RESUMO

BACKGROUND: Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS: Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS: Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.


Assuntos
Resposta ao Choque Frio/genética , Oryza/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Oryza/metabolismo , Oryza/fisiologia , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
PLoS One ; 11(8): e0160027, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27494320

RESUMO

Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.


Assuntos
Variação Genética , Oryza/genética , Alelos , Análise por Conglomerados , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Marcadores Genéticos , Genótipo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Análise de Componente Principal , Temperatura , Termotolerância
7.
Phytopathology ; 106(7): 710-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26976728

RESUMO

Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.


Assuntos
Interações Hospedeiro-Patógeno/genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Xanthomonas/fisiologia , Genoma de Planta , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
8.
Front Immunol ; 7: 650, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066448

RESUMO

The field of organ transplantation has undoubtedly made great strides in recent years. Despite the advances in donor-recipient histocompatibility testing, improvement in transplantation procedures, and development of aggressive immunosuppressive regimens, graft-directed immune responses still pose a major problem to the long-term success of organ transplantation. Elicitation of immune responses detected as antibodies to mismatched donor antigens (alloantibodies) and tissue-restricted self-antigens (autoantibodies) are two major risk factors for the development of graft rejection that ultimately lead to graft failure. In this review, we describe current understanding on genesis and pathogenesis of antibodies in two important clinical scenarios: lung transplantation and transplantation of islet of Langerhans. It is evident that when compared to any other clinical solid organ or cellular transplant, lung and islet transplants are more susceptible to rejection by combination of allo- and autoimmune responses.

9.
C R Biol ; 338(10): 650-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26321658

RESUMO

Ninety lowland rice cultivars of the eastern region of India were collected and screened for submergence and water logging tolerance and further used for validating the efficiency of molecular markers and their combinations for submergence tolerance. Submergence tolerance and elongation ability of the tested genotypes were measured in screening tanks along with tolerant and susceptible checks. The genotypes FR13A, Khoda, CR Dhan 300, Savitri Sub1, IR64 Sub1, IC-568009 and IC-568842 exhibited high submergence tolerance may be used as donor in the breeding program. Landrace 'Khoda' showed tolerance to submergence with moderate elongation ability for adaption. Boitalpakhia, Gayatri, Atiranga, Aghonibora, Chakaakhi, Moti, IC-567993 and IC-568921 possessed both characters of moderate elongation ability and moderate tolerance to submergence. Both of these traits are required for lowland varieties of eastern India to survive under flash flood and accumulated stagnant water conditions. RM8300, Sub1A203, AEX, Sub1BC2 and Sub1C173 were employed for molecular screening to identify the submergence-tolerant genotypes. Sub1A203 was capable of differentiating the tolerant and susceptible genotypes into groups. RM8300 and Sub1BC2 could also differentiate the genotypes with inclusion of some susceptible genotypes. The AEX and Sub1C173 marker could not show discrimination among the genotypes with respect to the traits. Using Sub1A203+Sub1BC2 was better amongst the combinations studied. The results of the study indicated a trend toward a negative association of Sub1BC2 with submergence tolerance while AEX and Sub1C marker did not show any significant association. The donors identified can be useful as parental lines while the molecular markers can be used for marker-assisted breeding work.


Assuntos
Adaptação Fisiológica/genética , Oryza/genética , Alelos , Ecossistema , Inundações , Genes de Plantas , Genótipo , Imersão , Índia , Família Multigênica , Oryza/fisiologia , Fenótipo , Filogenia , Melhoramento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Chuva
10.
Rice (N Y) ; 8(1): 51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26054243

RESUMO

BACKGROUND: Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. RESULTS: Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. CONCLUSION: The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA