Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 4: 100100, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35769403

RESUMO

Micronutrient malnutrition (or hidden hunger) caused by vitamin B-complex deficiency is a significant concern in the growing population. Vitamin B-complex plays an essential role in many body functions. With the introduction of nanotechnology in the food industry, new and innovative techniques have started to develop, which holds a promising future to end malnutrition and help achieve United Nations Sustainable Developmental Goal-2 (UN SDG-2), named as zero hunger. This review highlights the need for nanofortification of vitamin B-complex in food matrix to address challenges faced by conventional fortification methods (bioavailability, controlled release, physicochemical stability, and shelf life). Further, different nanomaterials like organic, inorganic, carbon, and composites along with their applications, are discussed in detail. Among various nanomaterials, organic nanomaterials (lipid, polysaccharides, proteins, and biopolymers) were found best for fortifying vitamin B-complex in foods. Additionally, different regulatory aspects across the globe and prospects of this upcoming field are also highlighted in this review.

2.
J Environ Manage ; 309: 114653, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176568

RESUMO

With the ever-increasing global population and industrialization, it has become a call of the hour to start taking care of the environment to balance the ecosystem. For this, effective monitoring and assessment are required, which involves collecting and measuring environmental details, temporal and spatial readings of environmental data, and parameters. However, assessment of the environment is very tedious as it includes monitoring target analytes, identifying their sources, and reporting, which invariably implies that detailed environmental monitoring would be an intricate and expensive process. The traditional protocols in environmental measures are often manual and time demanding, which makes it further difficult. Moreover, several changes also occur within the environment, which could be chemical, physical, or biological, and since these environmental impacts are often cumulative, it becomes difficult to measure an isolated system. Furthermore, the chances of skipping significant results and trends become high. Also, experimental data obtained from the environmental analysis are usually non-linear and multi-variant due to different associations among various contributing variables. Therefore, it is implied that accurate measurements and environment monitoring are not using traditional analytical protocols. Thus, the need for a chemometric approach in environmental pollution analysis becomes paramount due to the inherent limitations associated with the conventional approach of analyzing environmental datasets. Chemometrics has appeared as a potential technique, which enhances the particulars of the chemical datasets by using statistical and mathematical analysis methods to analyze chemical data beyond univariate analysis. Utilizing chemometrics to study the environmental data is a revolutionary idea as it helps identify the relationship between sources of contaminations, environmental drivers, and their impact on the environment. Hence, this review critically explores the concept of chemometrics and its application in environmental pollution analysis by briefly highlighting the idea of chemometrics, its types, applications, advantages, and limitations in the environmental domain. An attempt is also made to present future trends in applications of chemometrics in environmental pollution analysis.


Assuntos
Quimiometria , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental
3.
Mater Today Adv ; 13: 100208, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35039802

RESUMO

Graphene is a two-dimensional material with sp2 hybridization that has found its broad-spectrum potentialities in various domains like electronics, robotics, aeronautics, etc.; it has recently gained its utilities in the biomedical domain. The unique properties of graphene and its derivatives of graphene have helped them find their utilities in the biomedical domain. Additionally, the sudden outbreak of SARS-CoV-2 has immensely expanded the research field, which has also benefitted graphene and its derivatives. Currently, the world is facing a global pandemic due to the sudden outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), also known as COVID-19, from its major onset in Wuhan city, China, in December 2019. Presently, many new variants and mutants appear, which is more harmful than previous strains. However, researchers and scientists are focused on understanding the target structure of coronavirus, mechanism, causes and transmission mode, treatment, and alternatives to cure these diseases in this critical pandemic situation; many findings are achieved, but much more is unknown and pending to be explored. This review paper is dedicated to exploring the utilities of graphene and its derivatives in combating the SARS-CoV-2 by highlighting their mechanism and applications in the fabrication of biosensors, personal protection equipment (PPE) kits, 3-D printing, and antiviral coatings. Further, the paper also covers the cytotoxicity caused by graphene and its derivatives and highlights the graphene-based derivatives market aspects in biomedical domains. Thus, graphene and graphene-derived materials are our new hope in this pandemic time, and this review helps acquire broad knowledge about them.

4.
Environ Sci Process Impacts ; 23(8): 1060-1078, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132283

RESUMO

Ever since the global outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2/COVID-19) in the early part of 2020, there is no doubt that the SARS-CoV-2 pandemic has placed great tension globally and has affected almost all aspects of human endeavors. There are presently several research studies on the atmospheric environmental and economic effects of this dreaded virus. Supposedly, the responses ought to have also present innovations that would advance scientific research to mitigate its impacts since most of the ensuing consequences impact the atmospheric climatic conditions. Even when it appears that economic events would possibly return in no time, the circumstances will change. Specifically, from the existing literature, it appears that not much has been done to study the influence of the SARS-CoV-2 pandemic on climate change. Hence, this present review article will explore the possible connection between the SARS-CoV-2 pandemic and climate change. The utilization of various scientific domains for climate change studies during the SARS-CoV-2 pandemic and exploring the positive influences of the SARS-CoV-2 pandemic and measures to avoid the negative impacts on climate change owing to SARS-CoV-2 have also been discussed.


Assuntos
COVID-19 , Pandemias , Mudança Climática , Surtos de Doenças , Humanos , SARS-CoV-2
5.
RSC Adv ; 11(40): 24722-24746, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481029

RESUMO

To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.

6.
RSC Adv ; 10(45): 27194-27214, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515804

RESUMO

Nanotechnology is the branch of science which deals with particles ranging between 1-100 nm. These particles are called nanoparticles, and they exhibit unique electronic, optical, magnetic, and mechanical properties, which make them different from the bulk material. These properties of nanomaterials help them to find a variety of applications in the biomedical, agricultural, and environmental domains. Cerium oxide nanoparticles have gained a lot of attention as a potential future candidate for ending various kinds of problems by exhibiting redox activity, free radical scavenging property, biofilm inhibition, etc. Synthesis of these nanoparticles can be performed very easily by utilizing chemical or biological methods. But in this review, the focus is laid on the biosynthesis of these nanoparticles; as the biosynthesis method makes the cerium oxide nanoparticle less toxic and compatible with the living tissues, which helps them to find their path as an anticancer, anti-inflammatory and antibacterial agents. The pre-existing reviews have only focused on details relating to properties/applications/synthesis; whereas this review draws attention towards all the aspects in single review covering all the details in depth such as biosynthesis methods and its effect on the living tissues, along with properties, biomedical applications (diagnostic and therapeutic) and future outlook of the cerium oxide nanoparticle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...