Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(32): 38665-38673, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549356

RESUMO

Tactile sensors, or sensors that collect measurements through touch, have versatile applications in a wide range of fields including robotic gripping, intelligent manufacturing, and biomedical technology. Hoping to match the ability of human hands to sense physical changes in objects through touch, engineers have experimented with a variety of materials from soft polymers to hard ceramics, but so far, all have fallen short. A grand challenge for developers of "human-like" bionic tactile sensors is to be able to sense a wide range of strains while maintaining the low profile necessary for compact integration. Here, we developed a low-profile tactile sensor (∼300 µm in height) based on patterned, vertically aligned carbon nanotubes (PVACNT) that can repetitively sense compressive strains of up to 75%. Upon compression, reversible changes occur in the points of contact between CNTs, producing measurable changes in electrical admittance. By patterning VACNT pillars with different aspect ratios and pitch sizes, we engineered the range and resolution of strain sensing, suggesting that CNT-based tactile sensors can be integrated according to device specifications.

2.
ACS Appl Mater Interfaces ; 13(1): 1192-1203, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347745

RESUMO

Surfaces with switchable adhesive properties are employed by robots to quickly grip and release objects and thereby to perform dexterous manipulation and locomotion tasks. Robotic grippers with switchable adhesion have been developed using structured polymers and electrostatic mechanisms. However, manipulating delicate items can be challenging as this requires strong, switchable gripping forces that do not damage the target object. Soft nanocomposite electroadhesives (SNEs) were recently introduced as an option for handling such objects. The technology integrates an electrostatic adhesion mechanism into a mechanically compliant surface formed from dielectric-coated carbon nanotubes (CNTs) to ensure soft contact with target objects. In this study we explore the scaling of the electrostatic adhesion of SNEs, toward their potential application in macroscale grasping and manipulation. We measure electroadhesive pressures on millimeter-scale areas of up to ∼20 kPa with an on/off adhesion ratio of ∼700. Based on the measured forces and simple modeling, we conclude that the maximum achievable SNE adhesion forces are determined by dielectric breakdown in the insulating coating and surrounding air. Consequently, the SNE surface behaves as a parallel capacitor plate placed at an effective distance of 2.9 µm from the target object, despite being in contact with the target and therefore having the contacting CNTs separated from the surface by ∼2 nm dielectric coating. This mechanistic understanding of soft nanocomposite electroadhesives outlines the capabilities of the technology and informs their design for advanced manufacturing applications.

3.
Sci Adv ; 5(10): eaax4790, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31646176

RESUMO

Automated handling of microscale objects is essential for manufacturing of next-generation electronic systems. Yet, mechanical pick-and-place technologies cannot manipulate smaller objects whose surface forces dominate over gravity, and emerging microtransfer printing methods require multidirectional motion, heating, and/or chemical bonding to switch adhesion. We introduce soft nanocomposite electroadhesives (SNEs), comprising sparse forests of dielectric-coated carbon nanotubes (CNTs), which have electrostatically switchable dry adhesion. SNEs exhibit 40-fold lower nominal dry adhesion than typical solids, yet their adhesion is increased >100-fold by applying 30 V to the CNTs. We characterize the scaling of adhesion with surface morphology, dielectric thickness, and applied voltage and demonstrate digital transfer printing of films of Ag nanowires, polymer and metal microparticles, and unpackaged light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...