Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(18): 29536-29557, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710752

RESUMO

Spoof-surface-plasmon-polariton (SSPP) interconnects are potential candidates for next-generation interconnects to satisfy the growing demand for high-speed, large-volume data transfer in chip-to-chip and inter-chip communication networks. As in any interconnect, the viability and efficiency of the modulation technique employed will play a crucial role in the effective utilization of SSPP interconnects. In light of the lack of a comprehensive platform for the performance analysis of SSPP signal modulation, this work presents a theoretical framework that contributes to the following: 1) predictions of the maximum attainable modulation speed, limited by geometric dispersion in SSPP waveguide, 2) quantification of the fundamental trade-off relation between modulation speed and energy-efficiency for an arbitrary design of SSPP structure, 3) extension of the analysis over a broad category of SSPP modulation technique. In conjunction, a novel SSPP signal modulation technique is introduced, involving controlled alteration of the resonant condition of the SSPP interconnect using a variable resistor. Analyzing a sample SSPP waveguide with a 7 GHz cut-off frequency, the study identifies a potential ∼28% change in its transmission-band by varying the implanted resistor from 5kΩ to 5Ω, a range of values practically attainable with gate-controlled, state-of-the-art submicron scale field-effect transistors. The assertions of the theoretical model have been independently validated by finite-element method based numerical simulations, which show that the underlying concept can be utilized to realize the digital modulation scheme of the amplitude shift keying. For a millimeter-scale SSPP channel having 2.75 GHz transmission bandwidth, up to 300 Mbps modulation speed with nominal power loss is achieved in a standard, thermal-noise limited communication system. By scaling the interconnect to micrometer dimensions, the speed can be augmented up to 10 Gbps for data transfer over 100 mm distance with ≥80% energy efficiency. Essentially, the presented theory is the first of its kind that provides the foundational design guideline for designing and optimizing diverse range of SSPP modulators.

2.
Opt Express ; 30(26): 47152-47167, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558651

RESUMO

Although graphene has been the primary material of interest recently for spontaneous emission engineering through the Purcell effect, it features isotropic and thickness-independent optical properties. In contrast, the optical properties of black Phosphorus (BP) are in-plane anisotropic; which supports plasmonic modes and are thickness-dependent, offering an additional degree of freedom for control. Here we investigate how the anisotropy and thickness of BP affect spontaneous emission from a Hydrogenic emitter. We find that the spontaneous emission enhancement rate i.e. Purcell factor (PF) depends on emitter orientation, and PF at a particular frequency and distance can be controlled by BP thickness. At lower frequencies, PF increases with increasing thickness due to infrared (IR) plasmons, which then enhances visible and UV far-field spectra, even at energies greater than 10 eV. By leveraging the thickness and distance-dependent PF, deep UV emission can be switched between 103 nm or 122 nm wavelength from a Hydrogenic emitter. Additionally, we find that doping can significantly tune the PF near BP and this alteration depends on the thickness of the BP. Our work shows that BP is a promising platform for studying strong plasmon-induced light-matter interactions tunable by varying doping levels, emitter orientation, and thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...