Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 268: 115676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979355

RESUMO

Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.


Assuntos
Ecossistema , Plásticos , Humanos , Plásticos/toxicidade , Transporte Biológico , Plântula , Solo
2.
Sci Rep ; 13(1): 14385, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658127

RESUMO

Breeding programs rely on light wavelength, intensity, and photoperiod for rapid success. In this study, we investigated the ability of Ag/ZnO nanoparticles (NPs) to improve the photosynthesis and growth of wheat under simulated full solar spectrum conditions. The world population is increasing rapidly, it is necessary to increase the number of crops in order to ensure the world's food security. Conventional breeding is time-consuming and expensive, so new techniques such as rapid breeding are needed. Rapid breeding shows promise in increasing crop yields by controlling photoperiod and environmental factors in growth regulators. However, achieving optimum growth and photosynthesis rates is still a challenge. Here, we used various methods to evaluate the effects of Ag/ZnO NPs on rice seeds. Using bioinformatics simulations, we evaluated the light-harvesting efficiency of chlorophyll a in the presence of Ag/ZnO NPs. Chemically synthesized Ag/ZnO nanoparticles were applied to rice grains at different concentrations (0-50 mg/L) and subjected to a 12-h preparation time. Evaluation of seed germination rate and growth response in different light conditions using a Light Emitting Diode (LED) growth chamber that simulates a rapid growth system. The analysis showed that the surface plasmon resonance of Ag/ZnO NPs increased 38-fold, resulting in a 160-fold increase in the light absorption capacity of chlorophyll. These estimates are supported by experimental results showing an 18% increase in the yield of rice seeds treated with 15 mg/L Ag/ZnO NPs. More importantly, the treated crops showed a 2.5-fold increase in growth and a 1.4-fold increase in chlorophyll content under the simulated full sun spectrum (4500 lx) and a 16-h light/8-h dark photoperiod. More importantly, these effects are achieved without oxidative or lipid peroxidative damage. Our findings offer a good idea to increase crop growth by improving photosynthesis using Ag/ZnO nanoparticle mixture. To develop this approach, future research should go towards optimizing nanoparticles, investigating the long-term effects, and exploring the applicability of this process in many products. The inclusion of Ag/ZnO NPs in rapid breeding programs has the potential to transform crops by reducing production and increasing agricultural productivity.


Assuntos
Plântula , Óxido de Zinco , Triticum , Clorofila A , Melhoramento Vegetal , Fotossíntese , Clorofila , Produtos Agrícolas
3.
Plant Biotechnol J ; 20(6): 1197-1212, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266285

RESUMO

Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.


Assuntos
Sistemas CRISPR-Cas , Populus , Sistemas CRISPR-Cas/genética , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Populus/genética , Populus/metabolismo
4.
Avicenna J Med Biotechnol ; 10(1): 9-14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29296261

RESUMO

BACKGROUND: Avimers are originally types of artificial proteins with multiple binding sites for specific binding to certain antigens. Various radioisotopes and nanoparticles link these molecules, which are widely used in early detection in tissue imaging, treatment and study on carcinogenesis. Among these, c-Met antagonist avimer (C426 avimer), with ability to bind the c-Met receptor of tyrosine kinase (RTK) is an attractive candidate for targeted cancer therapy. In this study, a novel traceable C426 avimer gene was designed and introduced by adding the 12nt tracer binding site encoded four specific amino acid residues at the C-terminal region of C426 avimer coding sequence. METHODS: The 282 bp DNA sequence encoded 94aa avimer protein was synthesized and sub-cloned into prokaryotic pET26b expression vector. The expression of the mature peptide encoding the traceable avimer molecule was carried out in Escherichia coli strain BL21 using IPTG (Isopropyl ß-D-1-thiogalactopyranoside) induction process. The expression level of the 11 kDa traceable avimer was studied by SDS-PAGE, western blot and ELISA analysis. RESULTS: Docking analysis of C426 avimer protein and its ligand c-Met showed that the traceability related changes happened at the best conformation and optimal energy. The SDS-PAGE, western blotting and ELISA analysis results demonstrated that the expression of the 11 kDa C426 avimer molecule was detectable without any degradation compared with the control group. CONCLUSION: Concerning the consequences of this work, this new approach can be widely used in the medical field and provide an opportunity to evaluate the affinity and traceability features.

5.
Interdiscip Sci ; 10(4): 771-780, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28660536

RESUMO

microRNAs (miRNAs) are a newly discovered class of non-coding small RNAs roughly 22 nucleotides long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation, apoptosis and stress responses. The identification of miRNAs and their targets is an important need to understand their roles in the development and physiology of sweet onion (Allium cepa). In this research, several computational approaches were combined to make concise prediction of the potential miRNAs and their targets. We used previously known miRNAs from other plant species against Expressed Sequence Tags (EST) database to search for the potential miRNAs. As a result, nine potential miRNAs were identified in eight ESTs of A. cepa, belonging to eight families. We could further BLAST the mRNA database and found total 154 number of the potential targets in A. cepa based on these potential miRNAs. According to the mRNA target information provided by NCBI, most of the target mRNAs appeared to be involved in plant growth, signal transduction, development, and stress responses. Gene ontology (GO) analysis implicated these targets in 32 biological processes such as protein ubiquitination, plant hormone signalling pathways and heme biosynthesis.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Etiquetas de Sequências Expressas/metabolismo , MicroRNAs/genética , Cebolas/genética , Sequência de Bases , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico
6.
Mol Biol Res Commun ; 5(1): 31-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27844018

RESUMO

Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning strategy to develop multisite small interfering RNA (siRNA) cassette from different genes by two cloning steps. In this method, effective siRNA sites in the target messenger RNAs (mRNAs) were determined using in silico analysis and consecutively arranged to reduce length of inverted repeats. Here, we used one-step (polymerase chain reaction) PCR by designed long primer sets covering the selected siRNA sites. Rapid screening, cost-effective and shorten procedure are advantages of this method compare to PCR classic cloning. Validity of constructs was confirmed by optimal centroid secondary structures with high stability in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA