Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513821

RESUMO

Alzheimer's disease (AD) is a progressive neurological illness that is distinguished clinically by cognitive and memory decline and adversely affects the people of old age. The treatments for this disease gained much attention and have prompted increased interest among researchers in this field. As a springboard to explore new anti-Alzheimer's chemical prototypes, the present study was carried out for the synthesis of benzoxazole-oxadiazole analogues as effective Alzheimer's inhibitors. In this research work, we have focused our efforts to synthesize a series of benzoxazole-oxadiazole (1-19) and evaluating their anti-Alzheimer properties. In addition, the precise structures of synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR and HREI-MS. To find the anti-Alzheimer potentials of the synthesized compounds (1-19), in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), inhibitory activities were performed using Donepezil as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were due to different substitution patterns of substituent(s) at the variable position of both acetophenone aryl and oxadiazole aryl rings. The results of the anti-Alzheimer assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 5.80 ± 2.18 to 40.80 ± 5.90 µM (against AChE) and 7.20 ± 2.30 to 42.60 ± 6.10 µM (against BuChE) as compared to standard Donepezil drug (IC50 = 33.65 ± 3.50 µM (for AChE) and 35.80 ± 4.60 µM (for BuChE), respectively. Specifically, analogues 2, 15 and 16 were identified to be significantly active, even found to be more potent than standard inhibitors with IC50 values of 6.40 ± 1.10, 5.80 ± 2.18 and 6.90 ± 1.20 (against AChE) and 7.50 ± 1.20, 7.20 ± 2.30 and 7.60 ± 2.10 (against BuChE). The results obtained were compared to standard drugs. These findings reveal that benzoxazole-oxadiazole analogues act as AChE and BuChE inhibitors to develop novel therapeutics for treating Alzheimer's disease and can act as lead molecules in drug discovery as potential anti-Alzheimer agents.

2.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361517

RESUMO

In the present era of advanced technology, the surge for suitable multifunctional materials capable of operating above 300 °C has increased for the utilization of high-temperature piezoelectric devices. For this purpose, a pseudo-tetragonal phased CaBi4Ti3.98 (Nb0.5Fe0.5)0.02O15:xwt%MnO2 (CBTNF:xMn), with x = 0-0.20, ceramic system has been engineered for the investigation of structural, ferroelectric, dielectric and high-temperature-dependent piezoelectric properties. XRD analysis confirms that low-content Mn-ion insertion at the lattice sites of CBTNF does not distort the pseudo-tetragonal phase lattice of CBTNF:xMn ceramics, but enhances the functional behavior of the ceramic system, specifically at x = 0.15 wt%Mn. Compared to pure CBT and CBTNF ceramics, CBTNF:0.15Mn has demonstrated a highly dense relative density (~96%), a saturated polarization (PS) of 15.89 µC/cm2, a storage energy density (WST) of ~1.82 J/cm3, an energy-conversion efficiency (ƞ) of ~51% and an upgraded piezoelectric behavior (d33) of 27.1 pC/N at room temperature. Sharp temperature-dependent dielectric constant (εr) peaks display the solid ferroelectric behavior of the CBTNF:0.15Mn sample with a Curie temperature (TC) of 766 °C. The thermally stable piezoelectric performance of the CBTNF:0.15Mn ceramic was observed at 600 °C, with just a 0.8% d33 loss (25 pC/N). The achieved results signify that multi-valence Mn ions have effectively intercalated at the lattice sites of the pseudo-tetragonal phased CBTNF counterpart and enhanced the multifunctional properties of the ceramic system, proving it to be a durable contender for utilization in energy-storage applications and stable high-temperature piezoelectric applications.


Assuntos
Compostos de Manganês , Titânio , Temperatura , Óxidos , Cerâmica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...