Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643348

RESUMO

PURPOSE: Programmed death receptor ligand-1 (PD-L1) expression and tumor mutational burden (TMB) are approved screening biomarkers for immune checkpoint inhibition (ICI) in advanced triple negative breast cancer. We examined these biomarkers along with characterization of the tumor microenvironment (TME) between breast tumors (BrTs), axillary metastases (AxMs), liver metastases (LvMs), non-axillary lymph node metastases, and non-liver metastases to determine differences related to site of metastatic disease. METHODS: 3076 unpaired biopsies from breast cancer patients were analyzed using whole transcriptome sequencing and NextGen DNA depicting TMB within tumor sites. The PD-L1 positivity was determined with VENTANA PD-L1 (SP142) assay. The immune cell fraction within the TME was calculated by QuantiSeq and MCP-counter. RESULTS: Compared to BrT, more LvM samples had a high TMB (≥ 10 mutations/Mb) and fewer LvM samples had PD-L1+ expression. Evaluation of the TME revealed that LvM sites harbored lower infiltration of adaptive immune cells, such as CD4+, CD8+, and regulatory T-cells compared with the BrT foci. We saw differences in innate immune cell infiltration in LvM compared to BrT, including neutrophils and NK cells. CONCLUSIONS: LvMs are less likely to express PD-L1+ tumor cells but more likely to harbor high TMB as compared to BrTs. Unlike AxMs, LvMs represent a more immunosuppressed TME and demonstrate lower gene expression associated with adaptive immunity compared to BrTs. These findings suggest biopsy site be considered when interpreting results that influence ICI use for treatment and further investigation of immune composition and biomarkers expression by metastatic site.

2.
Mol Cancer Ther ; 22(9): 1100-1111, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37440705

RESUMO

As a result of tumor heterogeneity and solid cancers harboring multiple molecular defects, precision medicine platforms in oncology are most effective when both genetic and pharmacologic determinants of a tumor are evaluated. Expandable patient-derived xenograft (PDX) mouse tumor and corresponding PDX culture (PDXC) models recapitulate many of the biological and genetic characteristics of the original patient tumor, allowing for a comprehensive pharmacogenomic analysis. Here, the somatic mutations of 23 matched patient tumor and PDX samples encompassing four cancers were first evaluated using next-generation sequencing (NGS). 19 antitumor agents were evaluated across 78 patient-derived tumor cultures using clinically relevant drug exposures. A binarization threshold sensitivity classification determined in culture (PDXC) was used to identify tumors that best respond to drug in vivo (PDX). Using this sensitivity classification, logic models of DNA mutations were developed for 19 antitumor agents to predict drug response. We determined that the concordance of somatic mutations across patient and corresponding PDX samples increased as variant allele frequency increased. Notable individual PDXC responses to specific drugs, as well as lineage-specific drug responses were identified. Robust responses identified in PDXC were recapitulated in vivo in PDX-bearing mice and logic modeling determined somatic gene mutation(s) defining response to specific antitumor agents. In conclusion, combining NGS of primary patient tumors, high-throughput drug screen using clinically relevant doses, and logic modeling, can provide a platform for understanding response to therapeutic drugs targeting cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Testes Farmacogenômicos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Mutação
4.
J Pers Med ; 12(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579573

RESUMO

We describe our institutional experience of developing a liquid biopsy approach using circulating tumor DNA (ctDNA) analysis for personalized medicine in cancer patients, focusing on the hurdles encountered during the multistep process in order to benefit other investigators wishing to set up this type of study in their institution. Blood samples were collected at the time of cancer surgery from 209 patients with one of nine different cancer types. Extracted tumor DNA and circulating cell-free DNA were sequenced using cancer-specific panels and the Illumina MiSeq machine. Almost half of the pairs investigated were uninformative, mostly because there was no trackable pathogenic mutation detected in the original tumor. The pairs with interpretable data corresponded to 107 patients. Analysis of 48 gene sequences common to both panels was performed and revealed that about 40% of these pairs contained at least one driver mutation detected in the DNA extracted from plasma. Here, we describe the choice of our overall approach, the selection of the cancer panels, and the difficulties encountered during the multistep process, including the use of several tumor types and in the data analysis. We also describe some case reports using longitudinal samples, illustrating the potential advantages and rewards in performing ctDNA sequencing to monitor tumor burden or guide treatment for cancer patients.

5.
Br J Cancer ; 122(5): 648-657, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857724

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) mouse tumour models can predict response to therapy in patients. Predictions made from PDX cultures (PDXC) would allow for more rapid and comprehensive evaluation of potential treatment options for patients, including drug combinations. METHODS: We developed a PDX library of BRAF-mutant metastatic melanoma, and a high-throughput drug-screening (HTDS) platform utilising clinically relevant drug exposures. We then evaluated 34 antitumor agents across eight melanoma PDXCs, compared drug response to BRAF and MEK inhibitors alone or in combination with PDXC and the corresponding PDX, and investigated novel drug combinations targeting BRAF inhibitor-resistant melanoma. RESULTS: The concordance of cancer-driving mutations across patient, matched PDX and subsequent PDX generations increases as variant allele frequency (VAF) increases. There was a high correlation in the magnitude of response to BRAF and MEK inhibitors between PDXCs and corresponding PDXs. PDXCs and corresponding PDXs from metastatic melanoma patients that progressed on standard-of-care therapy demonstrated similar resistance patterns to BRAF and MEK inhibitor therapy. Importantly, HTDS identified novel drug combinations to target BRAF-resistant melanoma. CONCLUSIONS: The biological consistency observed between PDXCs and PDXs suggests that PDXCs may allow for a rapid and comprehensive identification of treatments for aggressive cancers, including combination therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Melanoma/tratamento farmacológico , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Camundongos , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Immunol ; 187(1): 472-81, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632714

RESUMO

Acute inflammation triggers the innate immune response of neutrophils that efficiently traffic from the bloodstream to concentrate at high numbers at the site of tissue infection or wounding. A gatekeeper in this process is activation of ß(2) integrins, which form bond clusters with ICAM-1 on the endothelial surface. These bond clusters serve dual functions of providing adhesive strength to anchor neutrophils under the shear forces of blood flow and directional guidance for cell polarization and subsequent transmigration on inflamed endothelium. We hypothesized that shear forces transmitted through high-affinity LFA-1 facilitates the cooperation with the calcium release-activated channel Orai1 in directing localized cytoskeletal activation and directed migration. By using vascular mimetic microfluidic channels, we observed neutrophil arrest on a substrate of either ICAM-1 or allosteric Abs that stabilize a high- or low-affinity conformation of LFA-1. Neutrophils captured via low-affinity LFA-1 did not exhibit intracellular calcium flux, F-actin polymerization, cell polarization, or directional migration under shear flow. In contrast, high-affinity LFA-1 provided orientation along a uropod-pseudopod axis that required calcium flux through Orai1. We demonstrate how the shear stress of blood flow can transduce distinct outside-in signals at focal sites of high-affinity LFA-1 that provide contact-mediated guidance for neutrophil emigration.


Assuntos
Sinalização do Cálcio/imunologia , Movimento Celular/imunologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Mecanotransdução Celular/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Actinas/antagonistas & inibidores , Actinas/metabolismo , Adulto , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Adesão Celular/imunologia , Polaridade Celular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/fisiologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Proteína ORAI1 , Ligação Proteica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...