Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310619, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) Spiro-OMeTAD imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel arylamine derivative, termed FTPE-ST, with a twist conjugated dibenzo[g,p]chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, was designed to enhance intra- and inter-molecular π-π interactions, without compromising on solubility. The 3D configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole (2-MA), and its large conjugated delocalization backbone endows the HTM with a high hole mobility (7.2 × 10-4 cm2V-1s-1). Moreover, the sulfur donors in the EDOT units coordinate to lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST as the HTM achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, which is one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively. This article is protected by copyright. All rights reserved.

2.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437457

RESUMO

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

3.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

4.
Adv Sci (Weinh) ; : e2309111, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501909

RESUMO

Nickel oxide (NiOx )-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2 , significantly deteriorates the performance and reproducibility of NiOx -based perovskite photovoltaics. Here, potassium borohydride (KBH4 ) is introduced as a dual-action reductant, which effectively avoids the Ni4+ /perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx -based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx -based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 °C in ambient air.

5.
Adv Mater ; 36(7): e2310800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019266

RESUMO

The best research-cell efficiency of perovskite solar cells (PSCs) is comparable with that of mature silicon solar cells (SSCs); However, the industrial development of PSCs lags far behind SSCs. PSC is a multiphase and multicomponent system, whose consequent interfacial energy loss and carrier loss seriously affect the performance and stability of devices. Here, by using spinodal decomposition, a spontaneous solid phase segregation process, in situ introduces a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface with interpenetrating structure in PSCs. The P3HT/PVK heterointerface tunes the energy alignment, thereby reducing the energy loss at the interface; The P3HT/PVK interpenetrating structure bridges a transport channel, thus decreasing the carrier loss at the interface. The simultaneous mitigation of energy and carrier losses by P3HT/PVK heterointerface enables n-i-p geometry device a power conversion efficiency of 24.53% (certified 23.94%) and excellent stability. These findings demonstrate an ingenious strategy to optimize the performance of PSCs by heterointerface via Spinodal decomposition.

6.
Angew Chem Int Ed Engl ; 63(1): e202315281, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37987092

RESUMO

Ultraviolet-induced degradation has emerged as a critical stability concern impeding the widespread adoption of perovskite solar cells (PSCs), particularly in the context of phase-unstable wide-band gap perovskite films. This study introduces a novel approach by employing a fully aromatic carbazole-based self-assembled monolayer, denoted as (4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)phosphonic acid (MeO-PhPACz), as a hole-selective layer (HSL) in inverted wide-band gap PSCs. Incorporating a conjugated linker plays a pivotal role in promoting the formation of a dense and highly ordered HSL on substrates, facilitating subsequent perovskite interfacial interactions, and fostering the growth of uniform perovskite films. The high-quality film could effectively suppress interfacial non-radiative recombination, improving hole extraction/transport efficiency. Through these advancements, the optimized wide-band gap PSCs, featuring a band gap of 1.68 eV, attain an impressive power conversion efficiency (PCE) of 21.10 %. Remarkably, MeO-PhPACz demonstrates inherent UV resistance and heightened UV absorption capabilities, substantially improving UV resistance for the targeted PSCs. This characteristic holds significance for the feasibility of large-scale outdoor applications.

7.
Adv Sci (Weinh) ; 10(34): e2304502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807807

RESUMO

Besides further improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSC), their long-term stability must also be ensured. Additives such as organic cations with halide counter anions are considered promising candidates to address this challenge, conferring both higher performance and increased stability to perovskite-based devices. Here, a stabilizing additive (N,N-dimethylmethyleneiminium chloride, [Dmmim]Cl) is identified, and its effect on charge carrier mobility and lifetime under thermal stress in triple cation perovskite (Cs0.05 MA0.05 FA0.90 PbI3 ) thin films is investigated. To explore the fundamental mechanisms limiting charge carrier mobility, temperature-dependent microwave conductivity measurements are performed. Different mobility behaviors across two temperature regions are revealed, following the power law Tm , indicating two different dominant scattering mechanisms. The low-temperature region is assigned to charge carrier scattering with polar optical phonons, while a strong decrease in mobility at high temperatures is due to dynamic disorder. The results obtained rationalize the improved stability of the [Dmmim]Cl-doped films and devices compared to the undoped reference samples, by limiting temperature-activated mobile ions and retarding degradation of the perovskite film.

8.
ACS Appl Energy Mater ; 6(15): 7955-7964, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37592930

RESUMO

To solve the toxicity issues related to lead-based halide perovskite solar cells, the lead-free double halide perovskite Cs2AgBiBr6 is proposed. However, reduced rate of charge transfer in double perovskites affects optoelectronic performance. We designed a series of pyridine-based small molecules with four different arms attached to the pyridine core as hole-selective materials by using interface engineering. We quantified how arm modulation affects the structure-property-device performance relationship. Electrical, structural, and spectroscopic investigations show that the N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine arm's robust association with the pyridine core results in an efficient hole extraction for PyDAnCBZ due to higher spin density close to the pyridine core. The solar cells fabricated using Cs2AgBiBr6 as a light harvester and PyDAnCBZ as the hole selective layer measured an unprecedented 2.9% power conversion efficiency. Our computed road map suggests achieving ∼5% efficiency through fine-tuning of Cs2AgBiBr6. Our findings reveal the principles for designing small molecules for electro-optical applications as well as a synergistic route to develop inorganic lead-free perovskite materials for solar applications.

9.
Chem Mater ; 35(15): 5914-5923, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576588

RESUMO

A group of small-molecule hole-transporting materials (HTMs) that are based on fluorenylidene fragments were synthesized and tested in perovskite solar cells (PSCs). The investigated compounds were synthesized by a facile two-step synthesis, and their properties were measured using thermoanalytical, optoelectronic, and photovoltaic methods. The champion PSC device that was doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) reached a power conversion efficiency of 22.83%. The longevity of the PSC device with the best performing HTM, V1387, was evaluated in different conditions and compared to that of 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-MeOTAD), showing improved stability. This work provides an alternative HTM strategy for fabricating efficient and stable PSCs.

10.
Nature ; 620(7973): 323-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344595

RESUMO

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

11.
Inorg Chem ; 62(20): 7622-7635, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37163724

RESUMO

Near-infrared luminescent materials have recently received considerable attention for a large number of applications, including in solid-state lighting, as bioimaging agents, as photovoltaic cells, and in the telecommunication industry. By adding diverse electron-donating or withdrawing groups on ancillary ligands based on benzenethiol-phenanthroline, we synthesized and optoelectronically characterized a series of novel ionic ruthenium complexes, namely RuS, RuSCl, RuSMe, and RuSNH2, for using in a light-emitting electrochemical cell. The synthesized complexes are intense red emitters in the range of 584-605 nm in solution, which depends on the substitutions of electron donor/acceptor moieties on the ancillary ligands. To find a suitable quantum mechanical approach, benchmark calculations based on time-dependent density functional theory were carried out on these complexes. Our benchmark revealed that the M06-L method has results close to those of the experiment. Furthermore, to gain a deeper insight into electronic transitions, several excitation processes were investigated at the TD-DFT-SMD-MN12-L/gen level. The results showed that in the designed complexes, the dominant transition is between the 4dZ2 electron of Ru (particle) and the π* orbitals of the ancillary ligand (hole). The single-layer devices, including these complexes along with a Ga/In cathode by a facile deposition method without the addition of any electron or hole transport layers, were fabricated and displayed red (678 nm) to near-infrared (701 nm) emission as well as a decrease of turn-on voltage from 3.85 to 3.10 V. In particular, adding a methyl group to the ancillary ligand in the complex RuSNH2 increases the external quantum efficiency to 0.55%, one of the highest observed values in the ruthenium phenanthroline family. This simple structure of the device lets us develop the practical applications of light-emitting electrochemical cells based on injection and screen-printing methods, which are very promising for the vacuum-free deposition of top electrodes.

12.
Adv Mater ; 35(35): e2302071, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226977

RESUMO

Currently, the full potential of perovskite solar cells (PSCs) is limited by chargecarrier recombination owing to imperfect passivation methods. Here, the recombination loss mechanisms owing to the interfacial energy offset and defects are quantified. The results show that a favorable energy offset can reduce minority carriers and suppress interfacial recombination losses more effectively than chemical passivation. To obtain high-efficiency PSCs, 2D perovskites are promising candidates, which offer powerful field effects and require only modest chemical passivation at the interface. The enhanced passivation and charge-carrier extraction offered by the 2D/3D heterojunction PSCs has boosted their power conversion efficiency to 25.32% (certified 25.04%) for small-size devices and to 21.48% for a large-area module (with a designated area of 29.0 cm2 ). Ion migration is also suppressed by the 2D/3D heterojunction, such that the unencapsulated small-size devices maintain 90% of their initial efficiency after 2000 h of continuous operation at the maximum power point.

13.
Nanomicro Lett ; 15(1): 138, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245182

RESUMO

Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices. Compared to the (001) facet, the (011) facet yields better photoelectric properties, including higher conductivity and enhanced charge carrier mobility. Thus, achieving (011) facet-exposed films is a promising way to improve device performance. However, the growth of (011) facets is energetically unfavorable in FAPbI3 perovskites due to the influence of methylammonium chloride additive. Here, 1-butyl-4-methylpyridinium chloride ([4MBP]Cl) was used to expose (011) facets. The [4MBP]+ cation selectively decreases the surface energy of the (011) facet enabling the growth of the (011) plane. The [4MBP]+ cation causes the perovskite nuclei to rotate by 45° such that (011) crystal facets stack along the out-of-plane direction. The (011) facet has excellent charge transport properties and can achieve better-matched energy level alignment. In addition, [4MBP]Cl increases the activation energy barrier for ion migration, suppressing decomposition of the perovskite. As a result, a small-size device (0.06 cm2) and a module (29.0 cm2) based on exposure of the (011) facet achieved power conversion efficiencies of 25.24% and 21.12%, respectively.

14.
Sci Adv ; 9(21): eadg0087, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235654

RESUMO

All-inorganic CsPbI3 perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI3 black phase. Here, we have used a thermally stable ionic liquid, bis(triphenylphosphine)iminium bis(trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between Cs4PbI6 and DMAPbI3 [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI3 films in the air. Because of the strong Pb-O contacts, [PPN][TFSI] increases the formation energy of superficial vacancies and prevents the undesired phase degradation of CsPbI3. The resulting PSCs attained a power conversion efficiency (PCE) of 20.64% (certified 19.69%) with long-term operational stability over 1000 hours. A record efficiency of 16.89% for an all-inorganic perovskite solar module was achieved, with an active area of 28.17 cm2.

15.
Angew Chem Int Ed Engl ; 62(29): e202304350, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37184396

RESUMO

Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (spiro-OMeTAD, termed "Spiro") is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro-type HTM (termed "DP") by substituting four anisole units on Spiro with 4-methoxybiphenyl moieties. By extending the π-conjugation of Spiro in this way, the HOMO level of the HTM matches well with the perovskite valence band, enhancing hole mobility and increasing the glass transition temperature. DP-based PSC achieves high power conversion efficiencies (PCEs) of 25.24 % for small-area (0.06 cm2 ) devices and 21.86 % for modules (designated area of 27.56 cm2 ), along with the certified efficiency of 21.78 % on a designated area of 27.86 cm2 . The encapsulated DP-based devices maintain 95.1 % of the initial performance under ISOS-L-1 conditions after 2560 hours and 87 % at the ISOS-L-3 conditions over 600 hours.

16.
Adv Mater ; 35(31): e2211324, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36869425

RESUMO

The interface tailoring is crucial for the efficiency and stability of Perovskite Solar Cells (PSCs). The reported interface engineering primarily focuses on the energy level turning and trap state passivation to improve the photovoltaic performance of PSCs. In this review, molecule modifications are classified according to the basics of electron transfer mechanisms for the interface tailoring of materials. An in-depth analysis of energy level modification and trap passivation, as well as the universal Density Functional Theory (DFT) method employed in interface tailoring. In addition, strategies to address environmental protection and large-scale mini-modules fabrication by interface engineering are also discussed. This review can guide the researchers in understanding interface engineering to design interface materials for efficient, stable, and eco-friendly PSCs.

17.
Cell Rep Phys Sci ; 4(3): 101304, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970227

RESUMO

Formamidinium lead iodide-based solar cells show promising device reliability. The grain imperfection can be further suppressed by developing powder methodology. The water uptake capability is critical for the stability of α-formamidinium lead triiodide (FAPbI3) thin films, and elucidating the migration of hydrogen species is challenging using routine techniques such as imaging or mass spectroscopy. Here, we decipher the proton diffusion to quantify indirect monitoring of H migration by following the N-D vibration using transmission infrared spectroscopy. The technique allows a direct assessment of the perovskite degradation associated with moisture. The inclusion of Cs in FAPbI3, reveals significant differences in proton diffusion rates, attesting to its impact. CsFAPbI3's ability to block the active layer access by water molecules is five times higher than α-FAPbI3, which is significantly higher than methylammonium lead triiodide (MAPbI3). Our protocol directly probes the local environment of the material to identify its intrinsic degradation mechanisms and stability, a key requirement for optoelectronic applications.

18.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934398

RESUMO

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

19.
iScience ; 26(3): 106079, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36843846

RESUMO

The future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaics (CPVs) is one of the most promising technologies owing to its high photo-conversion efficiency. Although most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC). This work constitutes a preliminary investigation into a "large-area" PSC module under a Fresnel lens (FL) with a "refractive optical concentrator-silicon-on-glass" base to minimize the PV performance and scalability trade-off concerning the PSCs. The FL-PSC system measured the solar current-voltage characteristics in variable lens-to-cell distances and illuminations. The PSC module temperature was systematically studied using the COMSOL transient heat transfer mechanism. The FL-based technique for "large-area" PSC architectures is a promising technology that further facilitates the potential for commercialization.

20.
Inorg Chem ; 61(51): 20734-20742, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515661

RESUMO

The color-tuning strategies of solid-state light-emitting devices (ss-LEDs) are mainly focused on engineering molecular structures. In this paper, for the first time, we developed a facile strategy for tuning the electroluminescence (EL) color from orange to green through the addition of the ionic additive TBAP (tetrabutylammonium perchlorate). To achieve the active ionic emissive compound for use in a light-emitting electrochemical cell (LEC), the neutral biscyclometalated bromo tetrazole iridium(III) [Ir(ppy)2(BrTz)] was exchanged to its cationic complex, [Ir(ppy)2(BrTz-Me)]ClO4 (ppy = 2-phenyl pyridine, BrTz = 4-bromo-2-pyridine tetrazole, BrTz-Me = 4-bromo-2-pyridine methyl tetrazole) with a new synthetic strategy. This method allows employing neutral Ir-cyclometalated complexes, which are ruled out for use in LECs because of their non-ionic behaviors. In the following, an LEC based on the new cationic [Ir(ppy)2(BrTz-Me)]ClO4 as the emissive layer was fabricated between the FTO (fluorine-doped tin oxide) anode and Ga:In alloy cathode without using any additive or polymers, which makes this configuration the simplest ss-LED so far. By adding the ionic additives, the electroluminescence characteristics of [Ir(ppy)2(BrTz-Me)]ClO4 were dramatically increased, including luminance (L) from 162.8 cd/m2 for the device with an additive to 212.9 and 355.9 cd/m2 for devices containing LiTFSI (bis(trifluoromethane)sulfonamide lithium salt) and TBAP, respectively. In particular, when TBAP was added to the [Ir(ppy)2(BrTz-Me)]ClO4 complex, the irradiance was significantly increased from 166.4 to 220.8 µW/cm2 with an efficacy of 1.78 cd/A and external quantum efficiency (EQE) value of 2.14%. The obtained EL results clearly showed that adding TBAP and LiTFSI significantly improved the electroluminescence characteristics and tuned the electroluminescence color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...