Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724627

RESUMO

Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.

2.
Front Cell Infect Microbiol ; 14: 1382289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638827

RESUMO

Pseudomonas aeruginosa belongs to the critical pathogens that represent a global public health problem due to their high rate of resistance as listed by WHO. P. aeruginosa can result in many nosocomial infections especially in individuals with compromised immune systems. Attenuating virulence factors by interference with quorum sensing (QS) systems is a promising approach to treat P. aeruginosa-resistant infections. Thymoquinone is a natural compound isolated from Nigella sativa (black seed) essential oil. In this study, the minimum inhibitory concentration of thymoquinone was detected followed by investigating the antibiofilm and antivirulence activities of the subinhibitory concentration of thymoquinone against P. aeruginosa PAO1. The effect of thymoquinone on the expression of QS genes was assessed by quantitative real-time PCR, and the protective effect of thymoquinone against the pathogenesis of PAO1 in mice was detected by the mouse survival test. Thymoquinone significantly inhibited biofilm, pyocyanin, protease activity, and swarming motility. At the molecular level, thymoquinone markedly downregulated QS genes lasI, lasR, rhlI, and rhlR. Moreover, thymoquinone could protect mice from the pathologic effects of P. aeruginosa increasing mouse survival from 20% to 100%. In conclusion, thymoquinone is a promising natural agent that can be used as an adjunct therapeutic agent with antibiotics to attenuate the pathogenicity of P. aeruginosa.


Assuntos
Benzoquinonas , Biofilmes , Pseudomonas aeruginosa , Animais , Camundongos , Virulência/genética , Percepção de Quorum , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo
3.
J Ethnopharmacol ; 323: 117611, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158095

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacterial resistance to antibiotics is a growing global concern, highlighting the urgent need for new antimicrobial candidates. Aframomum melegueta was traditionally used for combating urinary tract and soft tissue infections, which implies its potential as an antimicrobial agent. AIM OF STUDY: This study was designed to explore the antibacterial and anti-virulence capabilities of 4-shogaol isolated from A. melegueta seeds versus gram-negative bacteria: Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii, and the clinically important pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS: 4-Shogeol was isolated from A. melegueta seeds and its MICs were determined for Acinetobacter baumannii (ATCC-17978), Pseudomonas aeruginosa (ATCC-27853), Klebsiella pneumoniae (ATCC-700603), and Serratia marcescens clinical isolate. The anti-efflux activity and effect on the bacterial cell membrane for the compound were evaluated. Furthermore, the anti-virulence activities of the compound were evaluated. The effects of 4-shogeol at sub-MIC on bacterial motility, biofilm formation, and production of virulent enzymes and pigments were assessed. The anti-quorum sensing activities of 4-shogeol were evaluated virtually and by quantification its effect on the expression of quorum sensing encoding genes. The in vivo protection assay was conducted to evaluate the effect of 4-shogaol on the P. aeruginosa capacity to induce pathogenesis in mice. Finally, the effect of shogaol-antibiotics combination was assessed. RESULTS: The research revealed that 4-shogaol's antibacterial action primarily involves disrupting the bacterial cell membrane and efflux pumps. It also exhibited significant anti-virulence effects by reducing biofilm development and repressing virulence factors production, effectively protecting mice against P. aeruginosa infection. Furthermore, when combined with antibiotics, 4-shogaol demonstrated synergistic effects, leading to reduced minimum inhibitory concentrations (MICs) against P. aeruginosa. Its anti-virulence properties were linked to its ability to disrupt bacterial quorum sensing (QS) mechanisms, as evidenced by its interaction with QS receptors and downregulation of QS-related genes. Notably, in silico analysis indicated that 4-shogaol exhibited strong binding affinity to different P. aeruginosa QS targets. CONCLUSION: These findings suggest that 4-shogaol holds promise as an effective anti-virulence agent that can be utilized in combination with antibiotics for treating severe infections caused by gram-positive bacteria.


Assuntos
Anti-Infecciosos , Biofilmes , Catecóis , Camundongos , Animais , Anti-Infecciosos/farmacologia , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/química , Fatores de Virulência/metabolismo , Bactérias Gram-Negativas , Bactérias , Pseudomonas aeruginosa
4.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894078

RESUMO

The problem of antibiotic resistance is a global critical public health concern. In light of the threat of returning to the pre-antibiotic era, new alternative approaches are required such as quorum-sensing (QS) disruption and virulence inhibition, both of which apply no discernible selective pressure on bacteria, therefore mitigating the potential for the development of resistant strains. Bearing in mind the significant role of QS in orchestrating bacterial virulence, disrupting QS becomes essential for effectively diminishing bacterial virulence. This study aimed to assess the potential use of sub-inhibitory concentration (0.25 mg/mL) of glyceryl trinitrate (GTN) to inhibit virulence in Serratia marcescens and Pseudomonas aeruginosa. GTN could decrease the expression of virulence genes in both tested bacteria in a significant manner. Histopathological study revealed the ability of GTN to alleviate the congestion in hepatic and renal tissues of infected mice and to reduce bacterial and leukocyte infiltration. This study recommends the use of topical GTN to treat topical infection caused by P. aeruginosa and S. marcescens in combination with antibiotics.

5.
Biology (Basel) ; 12(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106705

RESUMO

Protecting food from bacterial contamination is crucial for ensuring its safety and avoiding foodborne illness. Serratia marcescens is one of the food bacterial contaminants that can form biofilms and pigments that spoil the food product and could cause infections and illness to the consumer. Food preservation is essential to diminish such bacterial contaminants or at least reduce their pathogenesis; however, it should not affect food odor, taste, and consistency and must be safe. Sodium citrate is a well-known safe food additive and the current study aims to evaluate its anti-virulence and anti-biofilm activity at low concentrations against S. marcescens. The anti-virulence and antibiofilm activities of sodium citrate were evaluated phenotypically and genotypically. The results showed the significant effect of sodium citrate on decreasing the biofilm formation and other virulence factors, such as motility and the production of prodigiosin, protease, and hemolysins. This could be owed to its downregulating effect on the virulence-encoding genes. An in vivo investigation was conducted on mice and the histopathological examination of isolated tissues from the liver and kidney of mice confirmed the anti-virulence activity of sodium citrate. In addition, an in silico docking study was conducted to evaluate the sodium citrate binding ability to S. marcescens quorum sensing (QS) receptors that regulates its virulence. Sodium citrate showed a marked virtual ability to compete on QS proteins, which could explain sodium citrate's anti-virulence effect. In conclusion, sodium citrate is a safe food additive and can be used at low concentrations to prevent contamination and biofilm formation by S. marcescens and other bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...