Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(36): 17024-17041, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39189132

RESUMO

Nanoceria (NC) are widely studied as potent nanozyme antioxidants, featuring unique multifunctional, self-regenerative, and high-throughput enzymatic functions. However, bare NC are reported to show poor colloidal stability in biological media. Despite this, the nexus between colloidal stability and antioxidant activity has rarely been assessed. Here, a library of three copolymeric stabilising agents was synthesised, each consisting of hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) brushes (P(OEGMA)) and a novel catechol anchoring block, and used for surface engineering of NC. The colloidal stability of the surface-engineered NC was assessed in phosphate buffered saline (PBS) by monitoring their precipitation via UV-Vis spectrophotometry, and their catalase (CAT)- and superoxide dismutase (SOD)-like activities were analysed using fluorospectrophotometry. The obtained results indicate that P(OEGMA) coating improves colloidal stability of NC over 48 h, highlighting the stable attachment of catechol functionalities to the surface of NC. In addition, X-ray photoelectron spectroscopy (XPS) indicates that the catechol functionalities lead to an increase in Ce3+/Ce4+ ratio and the concentration of oxygen vacancies, depending on the number of catechol units. Altogether, surface engineering of NC optimally results in an increase in CAT- and SOD-like activities by, respectively, 41% (=57.7% H2O2 elimination) and 78% (=78.0% O2˙- elimination) relative to bare NC, signifying a positive correlation between colloidal stability and antioxidant activity of the NC nanozymes.


Assuntos
Antioxidantes , Catecóis , Cério , Coloides , Antioxidantes/química , Antioxidantes/farmacologia , Coloides/química , Cério/química , Catecóis/química , Catalase/química , Catalase/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície , Peróxido de Hidrogênio/química , Polímeros/química , Polietilenoglicóis/química
2.
Adv Mater ; 35(26): e2208852, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36633376

RESUMO

Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Microfluídica , Cartilagem , Microtecnologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA