Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108238, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064902

RESUMO

The climatic changes have great threats to sustainable agriculture and require efforts to ensure global food and nutritional security. In this regard, the plant strategic responses, including the induction of plant hormones/plant growth regulators (PGRs), play a substantial role in boosting plant immunity against environmental stress-induced adversities. In addition, secondary metabolites (SMs) have emerged as potential 'stress alleviators' that help plants to adapt against environmental stressors imposing detrimental impacts on plant health and survival. The introduction of SMs in plant biology has shed light on their beneficial effects in mitigating environmental crises. This review explores SMs-mediated plant defense responses and highlights the crosstalk between PGRs and SMs under diverse environmental stressors. In addition, genetic engineering approaches are discussed as a potential revenue to enhance plant hormone-mediated SM production in response to environmental cues. Thus, the present review aims to emphasize the significance of SMs implications with PGRs association and genetic approachability, which could aid in shaping the future strategies that favor agro-ecosystem compatibility under unpredictable environmental conditions.


Assuntos
Ecossistema , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Plantas/genética , Agricultura
2.
J Plant Physiol ; 289: 154096, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776751

RESUMO

This study presents an exploration of the efficacy of brassinosteroids (BRs) and ethylene in mediating heat stress tolerance in rice (Oryza sativa). Heat is one of the major abiotic factors that prominently deteriorates rice production by influencing photosynthetic efficiency, source‒sink capacity, and growth traits. The application of BR (0.5 mM) and ethylene (200 µl l-1) either individually and/or in combination was found to alleviate heat stress-induced toxicity by significantly improving photosynthesis, source‒sink capacity and defense systems; additionally, it reduced the levels of oxidative stress markers and ethylene formation. The study revealed the positive influence of BR in promoting plant growth responses under heat stress through its interplay with ethylene biosynthesis and enhanced plant defense systems. Interestingly, treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) substantiated that BR application to heat-stressed rice plants enhanced ethylene-dependent pathways to counteract the underlying adversities. Thus, BR action was found to be mediated by ethylene to promote heat tolerance in rice. The present study sheds light on the potential tolerance mechanisms which can ensure rice sustainability under heat stress conditions.

3.
Plant Physiol Biochem ; 202: 107990, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37657298

RESUMO

The plant growth regulator, jasmonic acid (JA) has emerged as important molecule and involved in key processes of plants. In this study, we investigated the role of methyl jasmonate (MeJA) in achieving tolerance mechanisms against arsenic (As) stress in rice (Oryza sativa). Arsenic toxicity is a major global concern that significantly deteriorate rice production. The application of MeJA (20 µM) and ethylene (150 µL L-1) both individually and/or in combination were found significant in protecting against As-induced toxicity in rice, and significantly improved defense systems. The study shown that the positive influence of MeJA in promoting carbohydrate metabolism, photosynthesis and growth under As stress were the result of its interplay with ethylene biosynthesis and reduced oxidative stress-mediated cellular injuries and cell deaths. Interestingly, the use of JA biosynthesis inhibitor, neomycin (Neo) and ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) overturned the effects of MeJA and ethylene on plant growth under As stress. From the pooled data, it may also be concluded that Neo treatment to MeJA- treated rice plants restricted JA-mediated responses, implying that application of MeJA modulated ethylene- dependent pathways in response to As stress. Thus, the action of MeJA in As tolerance is found to be mediated by ethylene. The study will shed light on the mechanisms that could be used to ensure the sustainability of rice plants under As stress.


Assuntos
Arsênio , Oryza , Arsênio/toxicidade , Metabolismo dos Carboidratos , Homeostase , Etilenos
4.
Plant Genome ; 16(4): e20362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37480222

RESUMO

Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure "One Health" strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.


Assuntos
Grão Comestível , Melhoramento Vegetal , Humanos , Minerais , Sementes , Nutrientes
5.
Front Plant Sci ; 14: 1087946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909406

RESUMO

In the current changing environment, salt stress has become a major concern for plant growth and food production worldwide. Understanding the mechanisms of how plants function in saline environments is critical for initiating efforts to mitigate the detrimental effects of salt stress. Agricultural productivity is linked to nutrient availability, and it is expected that the judicious metabolism of mineral nutrients has a positive impact on alleviating salt-induced losses in crop plants. Nitrogen (N) is a macronutrient that contributes significantly to sustainable agriculture by maintaining productivity and plant growth in both optimal and stressful environments. Significant progress has been made in comprehending the fundamental physiological and molecular mechanisms associated with N-mediated plant responses to salt stress. This review provided an (a) overview of N-sensing, transportation, and assimilation in plants; (b) assess the salt stress-mediated regulation of N dynamics and nitrogen use- efficiency; (c) critically appraise the role of N in plants exposed to salt stress. Furthermore, the existing but less explored crosstalk between N and phytohormones has been discussed that may be utilized to gain a better understanding of plant adaptive responses to salt stress. In addition, the shade of a small beam of light on the manipulation of N dynamics through genetic engineering with an aim of developing salt-tolerant plants is also highlighted.

6.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457269

RESUMO

Agriculture crop development and production may be hampered in the modern era because of the increasing prevalence of ecological problems around the world. In the last few centuries, plant and agrarian scientific experts have shown significant progress in promoting efficient and eco-friendly approaches for the green synthesis of nanoparticles (NPs), which are noteworthy due to their unique physio-biochemical features as well as their possible role and applications. They are thought to be powerful sensing molecules that regulate a wide range of significant physiological and biochemical processes in plants, from germination to senescence, as well as unique strategies for coping with changing environmental circumstances. This review highlights current knowledge on the plant extract-mediated synthesis of NPs, as well as their significance in reprogramming plant traits and ameliorating abiotic stresses. Nano particles-mediated modulation of phytohormone content in response to abiotic stress is also displayed. Additionally, the applications and limitations of green synthesized NPs in various scientific regimes have also been highlighted.


Assuntos
Nanopartículas , Estresse Fisiológico , Agricultura , Produtos Agrícolas , Germinação
7.
Ecotoxicol Environ Saf ; 207: 111081, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927154

RESUMO

Brassinosteroids and hydrogen peroxide (H2O2) are extensively used to combat several environmental factors, including heavy metal stress in plants, but their cumulative impact on the maintenance of copper (Cu) homeostasis in plants could not be dissected at elevated level. This study was executed to explore the roles of 24-epibrassinolide (EBL; foliar) and H2O2 (root dipping) in resilience of tomato (Solanum lycopersicum L.) plants to Cu stress. The cumulative effect of EBL and H2O2 in tomato plants grown under Cu stress (10 or 100 mg kg-1 soil) were assessed. Roots of 20 d old plants were submerged in 0.1 mM of H2O2 solution for 4 h and subsequently transplanted in the soil-filled earthen pots and at 30 day after transplantation (DAT), the plants were sprinkled with deionized water (control), and/or 10-8 M EBL and plant performances were evaluated at 40 DAT. High Cu (100 mg kg-1 soil) concentration considerably reduced photosynthetic efficacy, cell viability, and plant growth, and deformed chloroplast ultrastructure and root morphology with altered stomatal behavior, but boosted the activity of antioxidant enzymes, proline content and electrolyte leakage in the leaves of tomato. Moreover, EBL and H2O2 implemented through distinct modes improved photosynthetic efficiency, modified chloroplast ultrastructure, stomatal behavior, root structure, cell viability and production of antioxidants and proline (osmolyte) that augmented resilience of tomato plants to Cu stress. This study revealed the potential of EBL and H2O2 applied through distinct mode could serve as an effective strategy to reduce Cu-toxicity in tomato crop.


Assuntos
Cobre/toxicidade , Poluentes do Solo/toxicidade , Solanum lycopersicum/fisiologia , Antioxidantes/farmacologia , Brassinosteroides/farmacologia , Sobrevivência Celular , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Prolina/metabolismo , Explosão Respiratória , Solo , Esteroides Heterocíclicos
8.
Physiol Mol Biol Plants ; 26(10): 1931-1944, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088040

RESUMO

Melatonin (MEL) is the potential biostimulator molecule, governing multiple range of growth and developmental processes in plants, particularly under different environmental constrains. Mainly, its role is considered as an antioxidant molecule that copes with oxidative stress through scavenging of reactive oxygen species and modulation of stress related genes. It also enhances the antioxidant enzyme activities and thus helps in regulating the redox hemostasis in plants. Apart from its broad range of antioxidant functions, it is involved in the regulation of various physiological processes such as germination, lateral root growth and senescence in plants. Moreover this multifunctional molecule takes much interest due to its recent identification and characterization of receptorCandidate G-protein-Coupled Receptor 2/Phytomelatonin receptor(CAND2/PMTR1) in Arabidopsis thaliana. In this compiled work, different aspects of melatonin in plants such as melatonin biosynthesis and detection in plants, signaling pathway, modulation of stress related genes and physiological role of melatonin under different environmental stresses have been dissected in detail.

9.
Chemosphere ; 252: 126486, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32234629

RESUMO

Hydrogen peroxide (H2O2) acts as a significant regulatory component interrelated with signal transduction in plants. The positive role of H2O2 in plants subjected to myriad of abiotic factors has led us to comprehend that it is not only a free radical, generated as a product of oxidative stress, but also helpful in the maintenance of cellular homeostasis in crop plants. Studies over the last two centuries has indicated that H2O2 is a key molecule which regulate photosynthesis, stomatal movement, pollen growth, fruit and flower development and leaf senescence. Exogenously-sourced H2O2 at nanomolar levels functions as a signalling molecule, facilitates seed germination, chlorophyll content, stomatal opening, and delays senescence, while at elevated levels, it triggers oxidative burst to organic molecules, which could lead to cell death. Furthermore, H2O2 is also known to interplay synergistically or antagonistically with other plant growth regulators such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid, nitric oxide and Ca2+ (as signalling molecules), and brassinosteroids (steroidal PGRs) under myriad of environmental stresses and thus, mediate plant growth and development and reactions to abiotic factors. The purpose of this review is to specify accessible knowledge on the role and dynamic mechanisms of H2O2 in mediating growth responses and plant resilience to HM stresses, and its crosstalk with other significant PGRs in controlling various processes. More recently, signal transduction by mitogen activated protein kinases and other transcription factors which attenuate HM stresses in plants have also been dissected.


Assuntos
Metais Pesados/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo , Morte Celular , Clorofila/metabolismo , Citocininas/metabolismo , Homeostase , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais
10.
Chemosphere ; 236: 124830, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549671

RESUMO

Polyamines (PAs) are recognized as plant growth regulators that are involved in the stress management in various crops. In the current study, mitigative roles of spermidine (Spd) and putrescine (Put) were assessed in manganese (Mn) stressed Brassica juncea plants. Spd or Put (1.0 mM) were applied to the foliage of Brassica juncea at 35 days after sowing (DAS) grown in the presence of Mn (30 or 150 mg kg-1 soil). The higher level of Mn (150 mg kg-1) diminished photosynthetic attributes and growth, enhanced the production of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion ( [Formula: see text] ) content, affected stomatal movement and increased the Mn concentration in roots and shoots of the plant at 45 DAS, whereas it enhanced the activities of various antioxidant enzymes and proline content in the foliage of Brassica juncea plants. On the other hand, treatment of PAs (Spd or Put) to Mn stressed as well as non-stressed plants resulted in a remarkable improvement in the stomatal behaviour, photosynthetic attributes, growth and biochemical traits, decreased the production of ROS (H2O2 and [Formula: see text] ) and concentration of Mn in different parts of plant. It is concluded that out of the two polyamines (Spd or Put), Spd proved more efficient and enhanced growth, photosynthesis, and metabolic state of the plants which bestowed tolerance and helped the plants to cope efficiently under Mn stress.


Assuntos
Antioxidantes/farmacologia , Manganês/toxicidade , Mostardeira/química , Fotossíntese , Poliaminas/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Manganês/farmacologia , Mostardeira/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo , Putrescina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espermidina/farmacologia
11.
Physiol Mol Biol Plants ; 25(4): 905-919, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31404216

RESUMO

Brassinosteroids and polyamines are generally used to surpass different abiotic stresses like heavy metal toxicity in plants. The current study was conducted with an aim that 24-epibrassinolide (EBL) and/or spermidine (Spd) could modify root morphology, movement of stomata, cell viability, photosynthetic effectiveness, carbonic anhydrase and antioxidant enzyme activities in Brassica juncea under manganese (Mn) stress (30 or 150 mg kg-1 soil). EBL (10-8 M) and/or Spd, (1.0 mM) were applied to the foliage of B. juncea plants at 35 days after sowing (DAS), grown in the presence of Mn (30 or 150 mg kg-1 soil). High Mn concentration (150 mg kg-1 soil) altered root morphology, affected stomatal movement, reduced the viability of cells and photosynthetic effectiveness and increased the production of reactive oxygen species (O2 ·- and H2O2) in the leaves and antioxidant defense system of B. juncea at 45 DAS. Furthermore, exogenous treatment of EBL and Spd under stress and stress- free conditions improved the aforesaid traits while decreased the O2 ·- and H2O2 production. Therefore, EBL and Spd could be applied to the foliage of B. juncea plants for the better growth under metal stress.

12.
Chemosphere ; 230: 544-558, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125883

RESUMO

Plant growth and development could be modulated by minute concentrations of hydrogen peroxide (H2O2) which serves as a signaling molecule for various processes. The present work was conducted with an aim that H2O2 could also modify root morphology, morphology and movement of stomata, photosynthetic responses, activity of carbonic anhydrase, and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress (Cu; 10 or 100 mg kg-1 soil). Roots of 20 d old plants were dipped in 0.1 or 0.5 mM of H2O2 solution for 4 h and then transplanted to the soil filled in earthen pots. High Cu stress (100 mg kg-1 soil) altered root morphology, reduced chlorophyll content and photosynthetic capacity and also affected movement of stomata and generation of antioxidant species at 40 d after transplantation. Further, root dipping treatment of H2O2 to plants under stress and stress-free conditions enhanced accumulation of proline and activity of catalase, peroxidase, and superoxide dismutase, whereas production of superoxide radical (O2•¯) and H2O2 were decreased. Overall, H2O2 treatment improved growth, photosynthesis, metabolic state of the plants which provided tolerance and helped the plants to cope well under Cu stress.


Assuntos
Antioxidantes/metabolismo , Cobre/toxicidade , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
13.
J Plant Physiol ; 173: 9-18, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462073

RESUMO

We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced oxidative stress by increasing proline accumulation as a result of increased activity of glutamyl kinase (GK) and decreased activity of proline oxidase (PROX). These nutrients also induced the activity of ATP-sulfurylase and serine acetyl transferase and the content of cysteine (Cys), a precursor for the synthesis of both reduced glutathione (GSH) and ethylene. Further, application of Se and S to plants under Cd stress reduced ethylene level and increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPX), reduced oxidative stress and improved photosynthesis and growth. The involvement of ethylene in Se and S-mediated alleviation of Cd stress was substantiated with the use of ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The use of AVG reversed the effects of Se and S on ethylene, content of proline and GSH and photosynthesis. The results suggested that Se and S both reversed Cd-induced oxidative stress by regulating ethylene formation, proline and GSH metabolism. Thus, Se or S-induced regulatory interaction between ethylene and proline and GSH metabolism may be used for the reversal of Cd-induced oxidative stress.


Assuntos
Cádmio/toxicidade , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Selênio/farmacologia , Enxofre/farmacologia , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Prolina Oxidase/metabolismo , Serina O-Acetiltransferase/metabolismo , Sulfato Adenililtransferase/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...