Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(24): 16859-16869, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799219

RESUMO

The manipulation of electronic device characteristics through electron spin represents a burgeoning frontier in technological advancement. Investigation of magnetic and transport attributes of the Tl2Mo(Cl/Br)6 double perovskite was performed using Wien2k and BoltzTraP code. When the energy states between ferromagnetic and antiferromagnetic conditions are compared, it is evident that the ferromagnetic state exhibits lower energy levels. Overcoming stability challenges within the ferromagnetic state is achieved through the manipulation of negative ΔHf within the cubic state. The analysis of the half metallicity character involves an analysis of band structure (BS) and DOS, elucidating its mechanism through PDOS using double exchange model p-d hybridization. The verification of 100% spin polarization is confirmed through factors such as spin polarization and the integer value of the total magnetic moment. Furthermore, the thermoelectric response, as indicated by the ratios of thermal-electrical conductivity and ZT, underscores the promising applications of these compounds in thermoelectric device applications.

2.
PLoS One ; 19(3): e0298414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483918

RESUMO

ß-glucan is a well-documented feed additive for its potent immunostimulatory properties in many farmed fish species. This study examined how it can also be a promising growth promoter, modulate antioxidant enzyme activities, and act as an anti-stress agent in striped catfish (Pangasianodon hypophthalmus). A 12-week feeding experiment was untaken to determine the effects of dietary ß-glucan supplementation at graded levels (0, 0.5, 1.0, and 1.5 g kg-1). Measured indicators suggest that a dietary inclusion level of 1.5 g kg-1 ß-glucan gave the highest positive responses: weight gain (120.10 g fish-1), survival (98.30%), and lower FCR (1.70) (P<0.05). Whole body proximate analysis had only revealed that crude protein was significantly affected by the dietary inclusion of ß-glucan (P<0.05), with the highest protein content (19.70%) being in fish that were fed with 1.5 g kg-1 ß-glucan. Although other inclusion levels (i.e., 0.5 and 1 g kg-1) of ß-glucan did not enhance body protein content (P>0.05). The assessment of fatty acid composition in muscle, liver, and adipose tissues showed modifications with the inclusion of ß-glucan. Antioxidative-related enzyme activities (inc. catalase, glutathione peroxidase, and superoxide dismutase) that were measured in the liver had higher levels when fed with ß-glucan inclusion diets (P<0.05). Following the feed trial, fish were subjected to crowding stress treatment. It was subsequently found that catfish fed with ß-glucan-based diet groups had lower levels of blood stress-related indicators compared to the control group with no dietary ß-glucan. The use of 1.5 g kg-1 of dietary ß-glucan resulted in the lowest measured levels of cortisol (43.13 ng mL-1) and glucose (50.16 mg dL-1). This study has demonstrated that the dietary inclusion of ß-glucan can have functional benefits beyond the immunological enhancements in striped catfish. Furthermore, its use can increase production levels and mitigate the stress associated with intensive farming practices.


Assuntos
Peixes-Gato , beta-Glucanas , Animais , Ração Animal/análise , Antioxidantes/farmacologia , beta-Glucanas/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise
3.
RSC Adv ; 14(3): 1822-1832, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192306

RESUMO

Vacancy-ordered double perovskites (DPs) are emerging materials for spintronics due to their stable structures and non-toxic properties. In this study, we conducted a comprehensive investigation into the role of 4d electrons in Tc to understand their impact on the ferromagnetic properties of K2TcY6 (Y = Cl, Br). We have employed a modified Back and Johnson potential to assess electronic and magnetic characteristics and utilized the BoltzTraP code to investigate thermoelectric effects. Experimental lattice constants confirmed the presence of stable structures and formation energy estimates affirmed their thermodynamic stability. The Heisenberg model and density of electron states (DOS) at the Fermi level provides insights into Curie temperature and spin polarization. The presence of ferromagnetism is evident in the density of states, reflecting the transition of electron spins that support the exchange mechanism. The study delves into how electron functionality influences the control of ferromagnetism, considering exchange constants, exchange energies, hybridization process and the crystal field energies. Moreover, the exploitation of magnetic moments from Tc to K and Cl/Br sites takes precedence in driving ferromagnetism by exchanging electron spins rather than forming magnetic clusters. Additionally, to explore the optical characteristics of the compounds, we investigated their optical absorption, dielectric constants and refractive index within the energy range of 0-10 eV, ensuring absorption across both the visible and ultraviolet regions. Finally, we delve into the impact of the thermoelectric effect on both thermoelectric performance and spin functionality, taking into account factors such as the Seebeck coefficient, power factor, and electronic conductivity.

4.
ACS Omega ; 8(43): 40341-40350, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929160

RESUMO

The current study used full-potential methods to examine the ferromagnetic characteristics of CdTm2Y4(Y= S, Se) spinels; i.e., structural, elastic, electronic, and thermoelectric characteristics of these spinels have been explored for the first time. We used PBEsol-GGA for enthalpy of formation calculations to explain the stability of the ferromagnetic state and calculate the elastic constants and corresponding mechanical modules to reveal the ductile behavior of the materials. The mBJ potential is used instead of PBEsol-GGA to obtain more accurate and precise results of electronic and thermoelectric characteristics. Using mBJ potential leads to complete occupation of the bands in the materials and a clear interpretation of the density of states (DOS). The analysis of the electronic band structure and DOS reveals the stability of the ferromagnetic state in the analyzed materials as a result of p-d hybridization-based exchange splitting of Tm cations in the lattice. The calculations of thermoelectric efficiency are effective in evaluating the aptitude pertinence of the material in waste energy recovery systems and other technological applications. The thermal parameters of these materials are also analyzed to examine their thermal stability over a wide range of temperatures. The results of these calculations are essential for determining the suitability of the materials for use in spintronics-based devices and thermoelectric appliances as these devices rely heavily on the material's thermoelectric properties.

5.
PLoS One ; 18(9): e0288163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669268

RESUMO

The present study was conducted on Head Punjnad (HP) and Head Taunsa (HT) to evaluate the contamination of Pb, Cr, As, Hg, and Cd in water, soil, sediment, fish as a whole and fish organs. Fish, water, soil and sediment samples were collected from different sites of HT and HP on a monthly basis for 8 months. Heavy metals in water, soil, and sediment were determined by a polarized Zeeman atomic absorption spectrophotometer and in fish and fish organs by an atomic absorption spectrophotometer. Contamination of Cd, Hg, and As was significantly (P<0.05) higher in water of HP as compared to HT, while Cr showed a non-significant (P>0.05) difference at HP and HT. Pb was significantly (P<0.05) higher in water of HT as compared to HP. In the case of soil, Cd, Hg, and Pb were higher at HT as compared to HP, while As and Cr were significantly (P<0.05) higher at HP as compared to HT. In sediment, contamination of Cd, Hg, and As were significantly (P<0.05) higher at HP as compared to HT, while the Cr difference was non-significant (P>0.05) but Pb showed a significantly (P<0.05) higher value at HT than HP. Cd accumulation in different fish species was recorded as R. rita ˃O. niloticus ˃C. marulius ˃S. sarwari ˃C. idella ˃C. catla ˃N. notopterus ˃E. vacha ˃L. rohita ˃C. carpio, respectively. Hg as O. niloticus ˃S. sarwari ˃R. rita ˃C. marulius ˃C. catla ˃N. notopterus ˃E. vacha ˃L. rohita ˃C. carpio ˃C. idella, respectively. As as O. niloticus ˃R. rita ˃S. sarwari ˃C. marulius ˃C. catla ˃C. carpio ˃N. notopterus ˃C. idella ˃E. vacha ˃L. rohita, respectively. Cr accumulation recorded as L. rohita ˃C. idella ˃O. niloticus ˃C. marulius ˃E. vacha ˃R. rita ˃C. catla ˃C. carpio ˃S. sarwari ˃N. notopterus, respectively. Pb accumulation in different fish species was recorded as C. idella ˃C. carpio ˃N. notopterus ˃L. rohita ˃O. niloticus ˃C. marulius ˃R. rita ˃S. sarwari ˃E. vacha ˃C. catla, respectively. Cd accumulation in different organs was recorded as kidney ˃liver ˃gills ˃muscle ˃skin ˃scale. Hg accumulation in different organs was recorded as kidney ˃gills ˃liver ˃skin ˃muscle ˃scale. As accumulation in different organs was recorded as kidney ˃liver ˃gills ˃muscle ˃skin ˃scale. Cr accumulation in different organs was recorded as gills ˃ liver ˃skin ˃muscle ˃kidney ˃scale. Pb accumulation in different organs was recorded as gills˃ kidney˃ skin˃ liver˃ muscle˃ scale.


Assuntos
Peixes-Gato , Mercúrio , Metais Pesados , Animais , Cádmio , Chumbo , Paquistão , Água , Solo
6.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838692

RESUMO

With the increasing demand for wastewater treatment and multidrug resistance among pathogens, it was necessary to develop an efficient catalyst with enhanced photocatalytic and antibacterial applications. The present study proposes a facile and green strategy for synthesizing zinc oxide (ZnO) decorated nickel (Ni) nanomaterials. The synthesized Ni/ZnO nanocomposite displays a high crystallinity and spherical morphology, which was systematically characterized by XRD, SEM, FT-IR, UV-visible spectroscopy, EDX, HRTEM, and XPS techniques. In addition, the bacteriological tests indicated that Ni/ZnO nanocomposite exhibits potent antibacterial activity against human pathogens, i.e., Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The inhibition zone observed in light and dark conditions for E. coli was 16 (±0.3) mm and 8 (±0.4) mm, respectively, which confirms the high efficacy of the nanocomposite in the presence of light compared to dark conditions. The detailed inhibition mechanism of said bacterium and damage were also studied through fluorescence spectroscopy and SEM analysis, respectively. Evaluation of antioxidant activity based on free radical scavenging activity revealed that the Ni/ZnO nanocomposite effectively scavenges DPPH. In the photocatalytic performance, the Ni/ZnO nanocomposite exhibited a remarkable degradation ability under the optimized condition, which was attributed to their controllable size, high surface area, and exceptional morphology. Good selectivity, high photodegradation, and antibacterial activities and satisfactory hemolytic behavior of the as-prepared nanocomposite make them able to become a potential candidate for superior biological performance and environmental remediation.


Assuntos
Nanocompostos , Óxido de Zinco , Humanos , Antioxidantes/farmacologia , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Níquel/farmacologia , Escherichia coli , Staphylococcus aureus , Biomimética , Antibacterianos/farmacologia , Nanocompostos/química , Catálise
7.
Pharmaceutics ; 15(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840009

RESUMO

Temozolomide (TMZ), the first-line chemotherapeutic drug against glioblastoma multiforme (GBM), often fails to provide the desired clinical outcomes due to inflammation-induced resistance amid inefficient drug delivery across the blood-brain barrier (BBB). The current study utilized solid lipid nanoparticles (SLNPs) for targeted delivery of TMZ against GBM. After successful formulation and characterization of SLNPs and conjugation with TMZ (SLNP-TMZ), their in-vitro anti-cancer efficacy and effect on the migratory potential of cancer cells were evaluated using temozolomide-sensitive (U87-S) as well as TMZ-resistant (U87-R) glioma cell lines. Elevated cytotoxicity and reduction in cell migration in both cell lines were observed with SLNP-TMZ as compared to the free drug (p < 0.05). Similar results were obtained in-vivo using an orthotopic xenograft mouse model (XM-S and XM-R), where a reduction in tumor size was observed with SLNP-TMZ treatment compared to TMZ. Concomitantly, higher concentrations of the drug were found in brain tissue resections of mice treated with SLNP-TMZ as compared to other vital organs than mice treated with free TMZ. Expression of inflammatory markers (Interleukin-1ß, Interleukin-6 and Tumor Necrosis factor-α) in a resistant cell line (U87-R) and its respective mouse model (XM-R) were also found to be significantly elevated as compared to the sensitive U87-S cell line and its respective mouse model (XM-S). Thus, the in-vitro and in-vivo results of the study strongly support the potential application of SLNP-TMZ for TMZ-sensitive and resistant GBM therapy, indicatively through inflammatory mechanisms, and thus merit further detailed insights.

8.
PLoS One ; 18(2): e0281274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787289

RESUMO

The bullseye snakehead (Channa marulius) is considered as an affordable and robust freshwater fish for farming in Asia. However, there is limited knowledge on the species' full nutritional requirements to date with extensive gaps in our knowledge and particularly in precision aspects of protein requirements. Therefore, a three-month feeding trial was conducted under semi-intensive farming conditions to determine the protein requirement of bullseye snakehead using test diets containing 40 (P40), 45 (P45), 50 (P50), and 55% (P55) crude protein levels. The growth performance results revealed that the 55% dietary protein group (P55) had the highest final mean weight (14.09 g fish-1), and net weight gain (12.82 g fish-1). When compared to other dietary treatments, the final weight (R2 = 0.921), and weight gain (R2 = 0.913), displayed a linear increasing trend as dietary protein is raised. The lowest FCR was observed in 50% (1.94±0.01) and 55% (1.97±0.01) CP diet groups compared to dietary treatments. Further analysis has shown that the body protein content also significantly increased as dietary protein was raised to 55%. Although, a reverse trend was found in body lipid levels with increasing protein in the diet. The incremental dietary protein also elevated proximal intestinal protease activity but decreased amylase and lipase activity. The overall essential and non-essential amino acids levels of snakehead fillet muscle reflected an increase in dietary protein. Overall, this study has shown that the fish fed a diet with 55% crude protein attained the highest growth performance and nutrient profile of the whole fish when compared to other dietary treatments tested. It would appear we did not obtain the maximum potential for growth under the present experimental conditions due to the upper protein constraint of 55% in the diet. Further quantitative studies are suggested.


Assuntos
Dieta , Peixes , Animais , Proteínas Alimentares , Composição Corporal , Aumento de Peso , Ração Animal/análise , Suplementos Nutricionais
9.
Photodiagnosis Photodyn Ther ; 38: 102853, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398263

RESUMO

Environmental pollution and various bacterial strains cause severe health problems. Thus a need exists to synthesize new materials and develop new techniques which can be used against these hazardous pathogens and components. In this research work, sustainable and effective Co/ZnO nanocomposites were prepared via a new hydrothermal technique and ammonia evaporation method. The synthesized nanomaterial was analytically characterized through various techniques such as X-ray diffraction (XRD), UV-vis spectroscopy, Scanning electron microscope (SEM), High transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The as prepared nanocomposite was tested for photodegradation of methylene blue (MB). This test was performed both in visible light and in dark condition. The results demonstrate that the said material is more efficient in light compared to dark conditions and decomposed more than 80% MB dye only in 60 min. The synthesized nanomaterial Co/ZnO was also tested against highly drug resistant bacteria Escherichia coli and Staphylococcus aureus both in light and dark. Hence, the antibacterial assessment indicates the zone of inhibition in visible light of Co/ZnO counter with Escherichia coli is 15 (±0.2) and for Staphylococcus aureus is 18 (±0.4) mm and in dark for Escherichia coli is 11 (±0.6) and for Staphylococcus aureus is 14 (±0.1) mm. Moreover, the detail mechanism, reactive oxygen species production and bacterial surface damage were also observed. We demonstrate that Co/ZnO nanomaterial is stable, eco-friendly photocatalyst shows high strength against MB degradation and also shows strong inhibition effect against pathogens in visible light.


Assuntos
Nanocompostos , Fotoquimioterapia , Infecções Estafilocócicas , Óxido de Zinco , Amônia/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Azul de Metileno/química , Azul de Metileno/farmacologia , Nanocompostos/química , Fotoquimioterapia/métodos , Staphylococcus aureus , Óxido de Zinco/farmacologia
10.
Psychopharmacology (Berl) ; 239(1): 47-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35029704

RESUMO

RATIONALE: Major depressive disorder is the leading cause of disability worldwide. The corticolimbic system plays a critical role in the emotional and cognitive aspects of major depressive disorder. Owing to the unsatisfactory efficacy of conventional antidepressants, there is a need to explore novel therapies. OBJECTIVES: The current study aimed to explore the antidepressant potential of thymoquinone, a natural compound with anti-inflammatory activity, and propose its underlying mechanism of action in the unpredictable chronic mild stress (UCMS) mouse model. METHODS: Coat state, forced swim test, elevated plus maze test, novelty suppressed feeding test and social interaction test were performed to quantify the behavioural shift induced by UCMS and the effect of thymoquinone and fluoxetine treatment. In addition, messenger RNA (mRNA) expression levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and BDNF and NeuN were analysed by a quantitative real-time polymerase chain reaction in the hippocampus and amygdala of experimental and control groups. RESULTS: UCMS significantly deteriorated coat state. Thymoquinone reinstated the resignation behaviour and latency to feed affected by UCMS. UCMS induced an increase in inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in the hippocampus and amygdala, which was decreased by thymoquinone. UCMS caused an increase in BDNF and NeuN mRNA levels in the amygdala while a decrease in the hippocampus. This opposite effect on BDNF was also compensated by thymoquinone; however, thymoquinone did not significantly change Ki67 and NeuN mRNA levels in the hippocampus. CONCLUSIONS: Thymoquinone restored the behavioural changes induced by UCMS. In addition, the antidepressant effect of thymoquinone is in line with changes in inflammatory parameters and changes in BDNF in the hippocampus and amygdala.


Assuntos
Transtorno Depressivo Maior , Doenças Neuroinflamatórias , Tonsila do Cerebelo , Animais , Benzoquinonas , Depressão , Modelos Animais de Doenças , Hipocampo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Psicológico/tratamento farmacológico
11.
Photodiagnosis Photodyn Ther ; 37: 102681, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34915183

RESUMO

The increase of microbial resistance poses threats to human health. Therefore, efficient treatment of microbial resistance is a global challenge.. During this study, the Ag/NiO nanocomposite was fabricated via simple and ecofriendly method, using Uncaria rhynchophylla extract as a reducing and capping agent to avoid the aggregation of as synthesized nanomaterials. Here, a range of characterization techniques were employed to characterize the sample which includes UV-vis spectroscopy, X-ray diffraction, FTIR spectroscopy, electron diffraction spectroscopy (EDX), scanning electron microscopy (SEM). Furthermore, the resultant nanocomposite demonstrated an efficient ability for the inhibition of both gram-positive and gram negative pathogenic multidrug resistant bacteria. Additionally, the Ag/NiO nanocomposite showed a durable antioxidant effect against DPPH that could still reach 63% at very low concentration, i.e. 0.5 mg/mL. Interestingly, the synthesized nanocomposite is efficient for the production of reactive oxygen species (ROS) and shows no hemolytic activity. Likewise, the Ag/NiO nanocomposite displayed excellent photocatalytic activity to degrade 85% methylene blue (MB) by 4 mg/25 mL and could be used for waste water treatment. It is believed that synthesized nanostructure with desirable morphology and preparation simplicity can be promising material for antimicrobial, antioxidant and catalytic applications.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Fotoquimioterapia , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Humanos , Nanocompostos/química , Fotoquimioterapia/métodos , Uncaria
12.
Photodiagnosis Photodyn Ther ; 36: 102619, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748999

RESUMO

The present study reports the synthesis of silver (Ag) decorated zinc oxide (ZnO) nanocomposite via green synthesis method by using Acacia arabica plant leaves extract as both reducing and capping agent. The results clearly indicate a uniform distribution of Ag nanoparticles (NPs) over ZnO surface. Various analytical and spectroscopic techniques were used for investigating the formation and morphology of as-synthesized Ag/ZnO nanocomposites. Emergence of SPR at 424 and 378 nm confirmed the synthesis of AgNPs and ZnO respectively. The confirmation of elemental composition and crystal structure of prepared nanomaterials (NMs) was carried out via EDX and XRD analysis. Results obtained from HRTEM and SEM analysis indicated small sized spherically shaped NMs. The as-synthesized was checked for its photocatalytic activity towards degradation of MB in the presence as well as absence of light irradiation. Results of degradation study revealed that Ag/ZnO exhibits remarkable photocatalytic activity in the presence of light whereby removing 90% of MB within 80 min. Moreover, the antibacterial activity of synthesized nanocomposite was examined in both visible light and dark conditions. The experiment showed that nanomaterial depicts enhanced antibacterial activity in light in comparison to dark. The results showed that the inhibition diameter of Ag/ZnO nanocomposite in light was found to be 18 (±0.2), 22 (±0.3) against E. coli and S. aureus respectively. The inhibition zone of the said nanomaterial against E. coli and S. aureus in dark was 11 (±0.3), 14 (±0.5) respectively. These results conclude that activity is delivered both in the presence of visible light and dark but efficiency of antibacterial activity is found to be more in visible light in comparison.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Fotoquimioterapia , Óxido de Zinco , Antibacterianos/farmacologia , Escherichia coli , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Prata/farmacologia , Staphylococcus aureus , Zinco , Óxido de Zinco/farmacologia
13.
Photodiagnosis Photodyn Ther ; 36: 102542, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547470

RESUMO

With increasing demand for the treatment of microbial resistance around the globe, it is necessary to develop metallic nanoparticles , ideally by the use of nontoxic medium i.e. plant constituents, that could arrest the microbial growth. For this reason, small and highly crystalline PdNPs were effectively synthesized by using Eryngium caeruleum leaf extract as both the reducing and capping agent. During the synthesis of PdNPs, the size and shape were made controlled by using different solvents i.e., ethanol, methanol and aqueous extract of Eryngium caeruleum. A series of physicochemical characterizations were applied to inquire the synthesis, crystal structure, particles size, and surface morphology of PdNPs. Furthermore, the PdNPs demonstrated excellent potential for the inactivation of gram-positive and gram-negative bacteria, where the methanol-PdNPs exhibited maximum growth inhibition zones against tested bacteria as compared to ethanol-PdNPs and aqueous-PdNPs. Besides, PdNPs showed better antioxidant activity to effectively scavenge 2, 2 diphenyl-1-picrylhydrazyl (DPPH). More importantly, the synthesized PdNPs are not only active for ROS generation but also show no hemolytic activity. We believe that this greener approach uncovered the useful and efficient applications of highly active PdNPs and their biocompatibility.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Paládio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Extratos Vegetais/farmacologia
14.
Photodiagnosis Photodyn Ther ; 35: 102458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34325079

RESUMO

Water pollution and bacterial resistance are universal problems. Drugs and protocols have been employed to deal with involved microbes and pollutants but these customary chemicals have many limitations. It is essential to produce new methods and materials to deal with these deleterious microbes. In the present contribution, highly efficient and stable nanocomposite of platinum activated zinc oxide was synthesized by a new plant extract and surfactant assisted protocol. The cetylpyridinium chloride was applied as surfactant to obtain high dispersion of spherical ZnO. The platinum ions were reduced on the ZnO surface by the use of Rhazya stricta plant extract. The prepared nanomaterial was used for photoinactivation of multidrug resistant bacterium Escherichia coli (E. coli). The synthesized nanomaterial showed strong E. coli inhibition efficiency in the presence of light and the observed diameter of zone of inhibition was 21 ±0.4. The effect of light on the inhibition of E.coli was studied by measuring the activated oxygen radicals inside the bacterium cell. The surface morphology of E.coli before and after treatment with Pt/ZnO was studied by SEM. Such effect was not observed in dark. The toxicity of the synthesized nanomaterials was also studied through haemolytic activity and the result shows that the nanomaterial prepared by the said method has very low toxicity. The photocatalytic degradation of methylene blue (MB) was also investigated in the presence of the synthesized nanomaterials. Effect of different parameters such as concentration of Pt/ZnO, Irradiation time and dye concentrations were also studied. An incredible photocatalytic deprivation of MB (98 %) was observed for Pt/ZnO nanocomposite as compared to individual Pt (48%) and ZnO (71%) nanoparticles after 5 minutes of irradiations. Further research is required to investigate the applications of Pt/ZnO nanocomposite.


Assuntos
Nanocompostos , Fotoquimioterapia , Óxido de Zinco , Catálise , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Tensoativos
15.
Mater Sci Eng C Mater Biol Appl ; 126: 112146, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082957

RESUMO

In this research work, facile, economical and eco-benign experimental procedure were adopted to synthesize Au/MgO nanocomposite with the help of Tagetes minuta leaves extract. Phytochemicals present in the leaves of Tagetes minuta were acting as reducing and stabilizing agents to avoid aggregation of nanomaterials during the preparation of Au/MgO nanocomposite. The biologically synthesized nanocomposite were systematically characterized by UV-vis spectroscopy, Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA), dynamic light scattering (DLS) and elemental mapping. UV-visible spectrum confirmed the presence of MgO and Au due to the presence of two SPR peaks at 315 nm and 528 nm, respectively. Moreover, the Au/MgO nanocomposite exhibited superior photocatalytic, antibacterial, hemolytic, and antioxidant activities. Photocatalytic performance tests of Au/MgO nanocomposite were- appraised by the rapid degradation of the methylene blue (MB) under UV light illumination. More importantly, after four successive cycles of MB degradation, the photocatalytic efficacy remained unchanged, which ensures the stability of the Au/MgO nanocomposite. Furthermore, the antibacterial tests showed that the advanced nanocomposite inhibited the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with zones of inhibition 18 (±0.3), 21 (±0.5), and 19 (±0.4) mm, respectively. The cytotoxicity study revealed that Au/MgO nanocomposite is nontoxic to ordinary healthy RBCs. Interestingly, the Au/MgO nanocomposite also possesses an excellent antioxidant activity, whereby effectively scavenging 82% stable and harmful DPPH. Overall, the present study concludes that eco-benign Au/MgO nanocomposite has excellent potential for the remediation of bacterial pathogens and degradation of MB.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Tagetes , Antibacterianos/farmacologia , Catálise , Óxido de Magnésio , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Photodiagnosis Photodyn Ther ; 34: 102275, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812077

RESUMO

In the presence of Fe3O4 nano-fibers, we prepared SiO2-Zn@Fe2O3 hybrid Nano-fibers through a novel and simple one-pot redox reaction between ZnSO4 & SiO2. The Fe3O4 exterior nano-fibers would be homogenously covered by SiO2 coating to arrange a distinctive core-shell construction and then Zn nanoparticles are intercalated in the covering of SiO2. The synthesized nanofibers were tested for photodegradation of methylene blue (MB). The result showed that 99 % MB was degraded in 60 min. Furthermore, the antibacterial potential of SiO2-Zn@Fe2O3 nanofibers was tested against E. coli and S. aureus bacteria both in light and dark. The impact of different analysis such as Reactive oxygen species (ROS) analysis, irradiation effect on bacterial inhibition, concentration effect of SiO2-Zn@Fe2O3 nanofibers and reduction of DPPH studied. The findings clearly demonstrate that ROS is produced in the presence of SiO2-Zn@Fe2O3 nanofibers in bacterial cells and is responsible for their inhibition. Findings have shown that synthesized nanostructures can also increase the stability of DPPH radicals with increasing concentrations of nanomaterials, making them a strong candidate for DPPH reduction. The overall results show that the efficacy of SiO2-Zn@Fe2O3 nanofibers for inhibition was more pronounced than that of individual iron oxides.


Assuntos
Nanofibras , Fotoquimioterapia , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Dióxido de Silício , Staphylococcus aureus , Zinco
17.
Photodiagnosis Photodyn Ther ; 33: 102162, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33373742

RESUMO

A major current biomedical challenge is to find materials that are specific, have high efficiency and with long lasting stability to serve as antimicrobial agents. In this contribution we examined new bifunctional nanostructural materials (ZnO/Pd-MCM-41) which were synthesized by a new hydrothermal procedure. To deposit active cites i.e. ZnO, a new protocol was followed in which catechol was used as a precipitating agent. Results indicated that nanostructures comprising palladium nanocrystals of a small size dispersed consistently within the hexagonal pores of the MCM-41 and also ZnO was successfully coated on mesoporous Pd-MCM-41 and that the mesoporous Pd-MCM-41 structure has been well-maintained upon modification of ZnO. The ZnO/Pd-MCM-41 is promising antibacterial agent and have efficient light inhibition activity towards Escherichia coli (E. coli), Psedomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The inhibition zone of irradiated ZnO/Pd-MCM-41 nanostructure against E. coli, P. aeruginosa and S. aureus were (17 ± 0.4) mm, 18 (±0.4) mm and 22 (±0.2) mm respectively while that in dark were (9 ± 0.5) mm, 11 (±0.3) mm and 13 (±0.4) mm respectively. The production of reactive oxygen species and hemolytic assay were also analyzed. Different parameters affecting the photo-inhibition efficiency of ZnO/Pd-MCM-41 were also studied. Likewise, the antioxidant activity of these nanostructures was studied against DPPH stabilization. Results indicated that the synthesized nanostructures are highly active and stabilized 99 % DPPH at very low concentration i.e. 1.4 mg/mL.


Assuntos
Preparações Farmacêuticas , Fotoquimioterapia , Óxido de Zinco , Antibacterianos/farmacologia , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício , Staphylococcus aureus
18.
Front Neurosci ; 15: 806713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35221890

RESUMO

Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood-brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 µM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A-induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.

19.
J Food Biochem ; 45(3): e13348, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32618005

RESUMO

Global health estimates indicated approximately 322 million people living with depression. Rising cost of depressive illness treatment and non-responsiveness to existing therapies demand continued research to explore new and more potent therapies. Exploring the potential of natural compounds for their potent antidepressant potentials is becoming topic of interest for scientists. Anti-inflammatory activity of thymoquinone, the active ingredient of Nigella sativa, has been well documented. Current study tested thymoquinone for its antidepressant effect in a Concanavalin A (Con A)-induced depressive-like behavior in BALB/c mice. Thymoquinone successfully protected against Con A-induced behavioral despair and anxiety-like behavior. Reduced grooming behavior as a function of Con A treatment, was also reinstated. Underlying mechanism responsible for antidepressant activity of thymoquinone was analyzed by molecular docking. Thymoquinone interacts in halogen-binding pocket (HBP) of serotonin reuptake transporter indicating its potential as serotonin reuptake inhibitor. Results of current study anticipate thymoquinone as a potential antidepressant drug candidate. PRACTICAL APPLICATIONS: Black seeds of Nigella sativa are consumed with traditional and religious reference since centuries. Thymoquinone, active, and abundant component of Nigella sativa, has shown positive effects in multiple studies against arthritis, asthma, hepatic injury, neurodegeneration, and cancer owing to its immunomodulatory and anti-inflammatory attributes. Considering inflammation as one of central components involved in pathophysiology of major depressive disorder, thymoquinone has been evaluated in current study for its antidepressant potential. Positive results of current study propose thymoquinone as an affordable, natural antidepressant drug candidate with better safety profile than currently available antidepressant regimes. Thymoquinone might provide benefits against inflammation-related sickness behavior that is associated with poorer outcome of clinical depression, thus, paving the way for effective drug development against treatment-resistant depression.


Assuntos
Transtorno Depressivo Maior , Animais , Benzoquinonas , Concanavalina A/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Extratos Vegetais
20.
Infect Genet Evol ; 85: 104514, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861908

RESUMO

Host genetic variability interplays with the environment and variegating viral factors to determine the outcome in HIV-1/AIDS. Several GWAS studies have reported that genetic heterogeneity of individuals leads to differential HIV susceptibility. Proxy SNPs that are in Linkage Disequilibrium to the GWAS SNPs could be important targets in HIV pathogenesis and need to be analyzed further for their potential regulatory role. Current study thus aimed to identify novel proxy SNPs that may play a critical role in HIV susceptibility and disease progression. 372 SNPs, associated with HIV-1/AIDS pathogenesis, were retrieved via GWAS catalogue. 1854 proxy SNPs, in Linkage Disequilibrium (r2 = 0.8) to the GWAS reported SNPs, were identified using the SNAP web tool. Regulatory functions of aforementioned 1854 polymorphic sites (GWAS SNPs and their proxy SNPs) were acquired from RegulomeDB. 178 of the proxy SNPs showed evidence of strong regulatory potential returning a score of ≤3. Among these regulatory SNPs, 22 had already been reported for their association with HIV/AIDS while 156 SNPs showed novel association. Three of these novel SNPs (g.rs6457282T>C, g.rs17064977C>T and g.rs3130350G>T) were validated using sequence specific PCR (SSP-PCR) on HIV-infected patients. For g.rs6457282T>C and rs17064977C>T, CT genotype was determined to be significantly associated with increased risk of HIV-1 infection (rs6457282T>C: OR = 9.5, 95% CI = 3.0792-29.3099, p = 0.0001; rs17064977C>T: OR = 8.1077, 95% CI = 3.1125-21.119, p = 0.0001). Moreover, the association of interacting protein partners of affected genes with HIV-1 elucidates the significance of corresponding SNPs in HIV disease outcome that further needs to be functionally deciphered.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1/genética , Desequilíbrio de Ligação/genética , Sequências Reguladoras de Ácido Nucleico/genética , Adulto , Progressão da Doença , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...