Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1048-1058, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559712

RESUMO

During the hydrogenation of CO2 to methanol over mixed-oxide catalysts, the strong adsorption of CO2 and formate poses a barrier for H2 dissociation, limiting methanol selectivity and productivity. Here we show that by using Co-containing dual-atom oxide catalysts, the poisoning effect can be countered by separating the site for H2 dissociation and the adsorption of intermediates. We synthesized a Co- and In-doped ZrO2 catalyst (Co-In-ZrO2) containing atomically dispersed Co and In species. Catalyst characterization showed that Co and In atoms were atomically dispersed and were in proximity to each other owing to a random distribution. During the CO2 hydrogenation reaction, the Co atom was responsible for the adsorption of CO2 and formate species, while the nearby In atoms promoted the hydrogenation of adsorbed intermediates. The cooperative effect increased the methanol selectivity to 86% over the dual-atom catalyst, and methanol productivity increased 2-fold in comparison to single-atom catalysts. This cooperative effect was extended to Co-Zn and Co-Ga doped ZrO2 catalysts. This work presents a different approach to designing mixed-oxide catalysts for CO2 hydrogenation based on the preferential adsorption of substrates and intermediates instead of promoting H2 dissociation to mitigate the poisonous effects of substrates and intermediates.

2.
Saudi Pharm J ; 32(1): 101884, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38090733

RESUMO

Diabetes mellitus (DM) is a metabolic disorder arising from insulin deficiency and defectiveness of the insulin receptor functioning on transcription factor where the body loses control to regulate glucose metabolism in ß-cells, pancreatic and liver tissues to homeostat glucose level. Mainstream medicines used for DM are incapable of restoring normal glucose homeostasis and have side effects where medicinal plant-derived medicine administrations have been claimed to cure diabetes or at least alleviate the significant symptoms and progression of the disease by the traditional practitioners. This study focused on screening phytocompounds and their pharmacological effects on anti-hyperglycemia on Swiss Albino mice of n-hexane, ethyl acetate, and ethanol extract of both plants Mycetia sinensis and Allophylus villosus as well as the in-silico investigations. Qualitative screening of phytochemicals and total phenolic and flavonoid content estimation were performed significantly in vitro analysis. FTIR and GC-MS analysis précised the functional groups and phytochemical investigations where FTIR scanned 14, 23 & 17 peaks in n-hexane, ethyl acetate, and ethanol extracts of Mycetia sinensis whereas the n-hexane, ethyl acetate, and ethanol extracts of Allophylus villosus scanned 11 peaks, 18 peaks, and 29 peaks, respectively. In GC-MS, 24 chemicals were identified in Mycetia sinensis extracts, whereas 19 were identified in Allophylus villosus extracts. Moreover, both plants' ethyl acetate and ethanol fractioned extracts were reported significantly (p < 0.05) with concentrations of 250 mg and 500 mg on mice for oral glucose tolerance test, serum creatinine test and serum alkaline phosphatase test. In In silico study, a molecular docking study was done on these 43 phytocompounds identified from Mycetia sinensis and Allophylus villosus to identify their binding affinity to the target Alpha Glucosidase (AG) and Peroxisome proliferator-activated receptor gamma protein (PPARG). Therefore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, quantum mechanics-based DFT (density-functional theory), and molecular dynamics simulation were done to assess the effectiveness of the selected phytocompounds. According to the results, phytocompounds such as 2,4-Dit-butyl phenyl 5-hydroxypentanoate and Diazo acetic acid (1S,2S,5R)-2-isopropyl-5-methylcyclohexyl obtained from Mycetia sinensis and Allophylus villosus extract possess excellent antidiabetic activities.

3.
Saudi Pharm J ; 32(1): 101887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38090734

RESUMO

Traditional medicinal plants have played a promising role in the human health system. In folklore medicine, Crotalaria quinquefolia L. is used to treat fever, pain, eczema, impetigo, lung infections, scabies. The present investigation was executed to identify secondary metabolites responsible for anti-diabetic potential of C. quinquefolia L. leaf extract along with their possible mechanistic pathways. The anti-hyperglycemic activity was assessed by in vitro α-amylase and α-glucosidase inhibitory assays and an in vivo oral glucose tolerance test and diabetogenic effect of streptozotocin in mice, followed by an integrative computational analysis. A total of 23 compounds were identified through GCMS and HPLC. The extract showed potent in-vitro α-amylase and α-glucosidase suppressive activity with IC50 values of 12.8 ± 0.1 µg/mL and 36.3 ± 0.07 µg/mL, respectively. In an in vivo oral glucose tolerance test, the extract (400 mg/kg body weight) prompted blood glucose levels to plummet by 18.9 % after 30 min, compared to the normal control and streptozotocin induced diabetes test, maximum glucose reduction was observed 11.67 % by dose of 200 mg/kg compared to the control; glibenclamide and extract (400 mg/kg) reduced blood glucose levels by 1.3 % and 16.7 %, respectively, compared to diabetic control at the end of the trial. Additionally, among the identified compounds, myricetin, quercetin, rutin, and kaempferol revealed good binding affinity as well as stability with the studied anti-diabetic proteins in docking and molecular dynamics simulation studies. Furthermore, QSAR analysis and network pharmacology studies of the identified compounds divulged enhanced insulin secretion stimulation, insulin receptor kinase activity, PPARγ expression; enzyme inhibition (α-glucosidase, α-amylase) and protection of the pancreas -mediated antidiabetic effects. Besides, they proved strong inhibitory potential against the studied antidiabetic proteins in other computational analysis. Based on the present findings, it can be affirmed that C. quinquefolia extract possesses anti-diabetic activity.

4.
Saudi Pharm J ; 31(8): 101681, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576860

RESUMO

Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.

5.
Gene ; 860: 147215, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709878

RESUMO

In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.


Assuntos
Arabidopsis , Alho , Alho/genética , Filogenia , Família Multigênica , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Secas , Salinidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
6.
Gene ; 835: 146664, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691406

RESUMO

The heavy-metal-associated (HMA) family plays a major role in the transportation of metals. Despite having the genome sequence of the tomato (Solanum lycopersicum), the HMA gene family has not been studied yet. In this study, we identified 48 HMA genes and categorized them into Cu/Ag P1B-ATPase and Zn/Co/Cd/Pb P1BATPase sub-families according to their phylogenic relationship with Arabidopsis and rice. The SlHMA genes were distributed throughout the 12 chromosomes. Analysis of gene structure, chromosomal position, and synteny, revealed that segmental duplications bestowed their evolution. The high numbers of stress-related cis-elements were found to be present in the putative promoter regions indicate the involvement of SlHMAs in stress modulation pathways. RNA-seq data revealed that SlHMAs had divergent expression in different tissues and developmental stages, where members of Cu/Ag P1B-ATPase subfamily were strongly expressed in the roots. RT-qPCR analysis of nine selected SlHMAs showed that most of the genes were up-regulated in response to heavy metals and moderately regulated in response to different abiotic stresses such as salt, drought, and cold.


Assuntos
Arabidopsis , Metais Pesados , Solanum lycopersicum , Adenosina Trifosfatases/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...