Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 14(28): 20398-20409, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932983

RESUMO

Synthesis of new supramolecules with specific properties and realistic applications requires a sound knowledge of the structure-property relationships of the synthesized molecules. Non-covalent interaction like hydrogen bonding is conducive in realizing mesomorphism. The induction of the liquid crystalline character is associated with the strength of hydrogen bonds formed between the interacting components, which are affected by the change of polarity and polarizability of both components upon change in their terminal polar substituents. When the polar substituents are similar in their reactivity, how does the size of the polar substituent influence the mesomorphism? New hydrogen bonded liquid crystals are synthesized with fluorine and chlorine as substituents, and the mesomorphic behaviour is studied with the size of the substituent as a critical parameter. The chemical characterization is carried out by FTIR measurements, the phase characterization by polarizing optical microscopy and the thermal characterization by differential scanning calorimetry. The DFT method utilizing wb97x-D theory along with the cc-pVTZ basis set were used for the calculations. The hybrid functional B3LYP-D3 and Gaussian type basis set 6-31G(d,p) were used for studying the orientation of the molecules. It is observed that the ortho substituents reduce the co-planarity, meta substituents lead to the molecular broadening while para substituents exhibited highest mesomorphism by enhancing longitudinal dipole moment. Fluoro substituted compounds are exhibiting higher mesomorphism while the bulky chloro substituents are helping to better stack the molecules possessing longer chain lengths.

3.
Angew Chem Int Ed Engl ; 63(30): e202405664, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38695160

RESUMO

The prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e- to a direct 4e- pathway. Detailed analysis reveals that intramolecular hydrogen-bond interactions in the ligand activate the catalytic Co, directing the oxygen binding and thus deciding the final product. The resulting catalyst is the first example of a Co-based molecular catalyst catalyzing a direct 4e- ORR via ligand isomerization, for which it shows an activity close to the benchmark Pt in an actual H2-O2 fuel cell. The effect of the ligand isomerism is demonstrated with different central metal ions, thus highlighting the generalizability of the findings and their potential to open new possibilities in the design of molecular catalysts.

4.
Chem Sci ; 14(23): 6383-6392, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325136

RESUMO

The essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with ß-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g-1 at 1 A g-1 while maintaining high performance metrics even at a rate as high as 50 A g-1. The elucidation of the decisive role of structural isomerism in reconfiguring the electrified interface represents a major step forward in understanding the electrodics of molecular platforms.

5.
J Phys Chem Lett ; 11(1): 263-271, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834996

RESUMO

The role of electrocatalysts in energy storage/conversion, biomedical and environmental sectors, green chemistry, and much more has generated enormous interest in comprehending their structure-activity relations. While targeting the surface-to-volume ratio, exposing reactive crystal planes and interfacial modifications are time-tested considerations for activating metallic catalysts; it is primarily by substitution in molecular electrocatalysts. This account draws the distinction between a substituent's chemical identity and isomerism, when regioisomerism of the -NO2 substituent is conferred at the "α" and "ß" positions on the macrocycle of cobalt phthalocyanines. Spectroscopic analysis and theoretical calculations establish that the ß isomer accumulates catalytically active intermediates via a cumulative influence of inductive and resonance effects. However, the field effect in the α isomer restricts this activation due to a vanishing resonance effect. The demonstration of the distinct role of isomerism in substituted molecular electrocatalysts for reactions ranging from energy conversion to biosensing highlights that isomerism of the substituents makes an independent contribution to electrocatalysis over its chemical identity.

6.
J Chem Phys ; 145(12): 124306, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782648

RESUMO

Silicon clusters with 3-50 atoms undergo isomerization/reversible dynamics or structural deformation at significantly lower temperatures of 350 K-500 K. Through Born Oppenheimer Molecular Dynamical (BOMD) simulations, the current study demonstrates that carbon alloying enhances the thermal stability of a silicon cluster. The study is carried out on a Si6 cluster which has been recently reported to undergo reversible dynamical movements using aberration-corrected transmission electron microscopy. Present BOMD simulations validate the experimentally observed reversible atomic displacements (reversible dynamical movements) at finite temperatures which are seen to persist nearly up to 2000 K. Carbon alloying of Si6 is seen to stretch the threshold of reversible dynamics from 200 K to 600 K depending upon the alloying concentration of carbon in the cluster.

7.
Chem Commun (Camb) ; 51(89): 16061-4, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26394046

RESUMO

Herein we report the electrocatalytic activity of boron-doped graphene for the reduction of CO2. Electrolysis takes place at low overpotentials leading exclusively to formate as the product (vis-à-vis benchmark Bi catalyst). Computational studies reveal mechanistic details of CO2 adsorption and subsequent conversion to formic acid/formate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA