Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1788(5): 983-92, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19171118

RESUMO

Sod2 is the Na(+)/H(+) exchanger of the fission yeast Schizosaccharomyces pombe that is principally responsible for salt tolerance. We examined the role of nine polar, membrane associated amino acids in the ability of the protein to confer salt tolerance in S. pombe. Wild type sod2 protein with a C-terminal GFP tag effectively rescued salt tolerance in S. pombe with deleted endogenous sod2. Sod2 protein with the mutations P163A, P183A, D298N, D389N, E390Q, E392Q and E397Q also conveyed salt tolerance as effectively as the wild type sod2 protein. In contrast, the mutation P146A resulted in a protein that did not convey salt tolerance nearly as effectively as the wild type and did not extrude Na(+) as well as the wild type. Mutation of Pro(146) to Ser, Asp or Lys had an intermediate effect. Mutation of Thr(142) to Ser resulted in a slightly defective protein. Western blot analysis showed that all mutant proteins were expressed at similar levels as wild type sod2 protein. Examination of the localization of the proteins showed that wild type and most sod2 mutants were present in the plasma membrane while the P146A mutant had an intracellular localization. Limited tryptic digestion suggested that the P146A sod2 protein had a change in conformation in comparison to the wild type protein. The results suggest that Pro(146) is an amino acid critical to sod2 structure, function and localization.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Fenômenos Biofísicos , DNA Fúngico/genética , Técnica Indireta de Fluorescência para Anticorpo , Genes Fúngicos , Transporte de Íons , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Prolina/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Espectrofotometria Atômica , Tripsina
2.
Biochim Biophys Acta ; 1774(9): 1092-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17693143

RESUMO

Phylogenetic analysis of the superfamily of D-2-hydroxyacid dehydrogenases identified the previously unrecognized cluster of glyoxylate/hydroxypyruvate reductases (GHPR). Based on the genome sequence of Rhizobium etli, the nodulating endosymbiont of the common bean plant, we predicted a putative 3-phosphoglycerate dehydrogenase to exhibit GHPR activity instead. The protein was overexpressed and purified. The enzyme is homodimeric under native conditions and is indeed capable of reducing both glyoxylate and hydroxypyruvate. Other substrates are phenylpyruvate and ketobutyrate. The highest activity was observed with glyoxylate and phenylpyruvate, both having approximately the same kcat/Km ratio. This kind of substrate specificity has not been reported previously for a GHPR. The optimal pH for the reduction of phenylpyruvate to phenyllactate is pH 7. These data lend support to the idea of predicting enzymatic substrate specificity based on phylogenetic clustering.


Assuntos
Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/isolamento & purificação , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , Filogenia , Rhizobium etli/enzimologia , Alinhamento de Sequência , Especificidade por Substrato
3.
FEMS Microbiol Lett ; 266(2): 210-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17233732

RESUMO

Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the Nod factor backbone in Sinorhizobium sp. BR816, as was shown for other rhizobia. Interestingly, inactivation of nodH enables inoculated bean plants to fix significantly more nitrogen under different experimental setups. Our studies show that nodH in the wild-type strain is still expressed during the later stages of symbiosis. This is the first report on enhanced nitrogen fixation by blocking Nod factor sulfation.


Assuntos
Proteínas de Bactérias/genética , Phaseolus/microbiologia , Sinorhizobium/genética , Sulfotransferases/genética , Simbiose/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Família Multigênica , Mutação , Fixação de Nitrogênio/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Sinorhizobium/enzimologia , Sinorhizobium/metabolismo , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...