Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267714

RESUMO

We combined a conducting polymer, polyaniline (PANI), with an organic semiconducting macrocyclic (MCs) material. The macrocycles are the phthalocyanines and porphyrins used to tune the electrical properties of the PANI, which benefits from their ability to enhance sensor response. For this, we proceeded by a simple ultrasonically assisted reaction involving the two components, i.e., the PANI matrix and the MCs, to achieve the synthesis of the composite nanostructure PANI/MCs. The composite nanostructure has been characterized and deposited on interdigitated electrodes (IDEs) to construct resistive sensor devices. The isolated nanostructured composites present good electrical properties dominated by PANI electronic conductivity, and the characterization reveals that both components are present in the nanostructure. The experimental results obtained under gas exposures show that the composite nanostructures can be used as a sensing material with enhanced sensing properties. The sensing performance under different conditions, such as ambient humidity, and the sensor's operating temperature are also investigated. Sensing behavior in deficient humidity levels and their response at different temperatures revealed unusual behaviors that help to understand the sensing mechanism. Gas sensors based on PANI/MCs demonstrate significant stability over time, but this stability is highly reduced after experiments in lower humidity conditions and at high temperatures.

2.
Biosensors (Basel) ; 6(3)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598214

RESUMO

Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH2-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH2-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH2-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM-400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM-300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Ácido Acético/análise , Indóis/análise , Isoindóis , Limite de Detecção
3.
Inorg Chem ; 47(17): 7483-92, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18661971

RESUMO

The dinuclear gold complexes [{Au(PPh 3)} 2(mu- dmid)] ( 1) ( dmid = 1,3-dithiole-2-one-4,5-dithiolate) and [{Au(PPh 3)} 2(mu- dddt)] ( 2) ( dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) were synthesized and characterized by X-ray crystallography. Both complexes exhibit intramolecular aurophilic interactions with Au...Au distances of 3.1984(10) A for 1 and 3.1295(11) A for 2. A self-assembly reaction between 4,5-bis(2-hydroxyethylthio)-1,3-dithiole-2-thione ( (HOCH 2 CH 2 ) 2 dmit) and [AuCl(tht)] affords the complex [AuCl{ (HOCH 2 CH 2 ) 2 dmit}] 2 ( 4), which possesses an antiparallel dimeric arrangement resulting from a short aurophilic contact of 3.078(6) A. This motif is extended into two dimensions due to intra- and intermolecular hydrogen bonds via the hydroxyethyl groups, giving rise to a supramolecular network. Three compounds were investigated for their rich photophysical properties at 298 and 77 K in 2-MeTHF and in the solid state; [Au 2(mu- dmid)(PPh 3) 2] ( 1), [Au 2(mu- dddt)(PPh 3) 2] ( 2), and [AuCl{( HOCH 2 CH 2 ) 2 dmit}] ( 4). 1 exhibits relatively long-lived LMCT (ligand-to-metal charge transfer) emissions at 298 K in solution (370 nm; tau e approximately 17 ns, where M is a single gold not interacting with the other gold atom; i.e., the fluxional C-SAuPPh 3 units are away from each other) and in the solid state (410 nm; tau e approximately 70 mus). At 77 K, a new emission band is observed at 685 nm (tau e = 132 mus) and assigned to a LMCT emission where M is representative for two gold atoms interacting together consistent with the presence of Au...Au contacts as found in the crystal structure. In solution at 77 K, the LMCT emission is also red-shifted to 550 nm (tau e approximately 139 mus). It is believed to be associated to a given rotamer. 2 also exhibits LMCT emissions at 380 nm at 298 K in solution and at 470 nm in the solid state. 4 exhibits X/MLCT emission (halide/metal to ligand charge transfer) where M is a dimer in the solid state with obvious Au...Au interactions, resulting in red-shifted emission band, and is a monomer in solution in the 10 (-5) M concentration (i.e., no Au...Au interactions) resulting in blue-shifted luminescence. Both fluorescence and phosphorescence are observed for 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA