Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(15): 4283-4294, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35509460

RESUMO

The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated. We utilize the supra-amphiphile concept where anion binding converts cyanosurf into a charged and amphiphilic complex triggering its self-organization into monolayers at the air-water interface. Initially, cyanosurf forms aggregates at the surface of a pure water solution. When the weakly hydrated and size-matched hexafluorophosphate (PF6 -) and perchlorate (ClO4 -) anions are added, the macrocycles form distinct monolayer architectures. Surface-pressure isotherms reveal significant reorganization of the surface-active molecules upon anion binding while infrared reflection absorption spectroscopy show the ion-bound complexes are well ordered at the interface. Vibrational sum frequency generation spectroscopy shows the water molecules in the interfacial region are highly ordered in response to the charged monolayer of cyanosurf complexes. Consistent with the importance of recognition, we find the smaller mis-matched chloride does not trigger the transformation. However, the size-matched phosphate (H2PO4 -) also does not trigger monolayer formation indicating hydration inhibits its interfacial binding. These studies reveal how anion-selective recognition and hydration both control the binding and thus the switching of a responsive molecular interface.

2.
J Phys Chem A ; 124(49): 10171-10180, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33253571

RESUMO

There is a critical need for receptors that are designed to enhance anion binding selectivity at aqueous interfaces in light of the growing importance of separation technologies for environmental sustainability. Here, we conducted the first study of anion binding selectivity across a series of prevalent inorganic oxoanions and halides that bind to a positively charged guanidinium receptor anchored to an aqueous interface. Vibrational sum frequency generation spectroscopy and infrared reflection absorption spectroscopy studies at the water-air interface reveal that the guanidinium receptor binds to an oxoanion series in the order SO42- > H2PO4- > NO3- > NO2- while harboring very weak interactions with the halides in the order I- > Cl- ≈ Br-. In spite of large dehydration penalties for sulfate and phosphate, the more weakly hydrated guanidinium receptor was selective for these oxoanions in contradiction to predictions made from ion partitioning alone, like the Hofmeister series and Collins's rules. Instead, sulfate binding is likely favored by the suppression of dielectric screening at the interface that consequently boosts Coulombic attractions, and thus helps offset the costs of anion dehydration. Geometric factors also favor the oxoanions. Furthermore, the unique placement of iodide in our halide series ahead of the stronger hydrogen-bond acceptors (Cl-, Br-) suggests that the binding interaction also depends upon single-ion surface partitioning from bulk water to the interface. Knowledge of the anion binding preferences displayed by a guanidinium receptor sheds light on the receptor architectures needed within designer interfaces to control selectivity.

3.
J Org Chem ; 85(12): 8013-8020, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32469215

RESUMO

We probed tandem aldol condensations of sixteen o-hydroxyacetophenones, carrying electron-withdrawing and -donating groups at positions 4 and 5, using five molar equivalents of SiCl4 in anhydrous ethanol. Substrates carrying electron-withdrawing groups (EWGs) (0 < ∑σ > 0.63) populated the equilibria with isospiropyrans (12-74% yield), while those carrying electron-donating groups (EDGs) (∑σ < -0.31) gave flavylium salts (50-80%) or thermochromic bis-spiropyrans (73%). The results are of interest for developing novel organic materials possessing switchable photochromic and thermochromic characteristics.

4.
J Phys Chem A ; 124(27): 5621-5630, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441942

RESUMO

The selectivities and driving forces governing phosphate recognition by charged receptors at prevalent aqueous interfaces is unexplored relative to the many studies in homogeneous solutions. Here we report on electrostatic binding versus hydrogen-bond-assisted electrostatic binding of phosphate (H2PO4-) for two important receptor classes in the unique microenvironment of the air-water interface. We find that the methylated ammonium receptor (U-Ammo+) is dominated by electrostatic binding to phosphate anions and fails to be selective for phosphate binding over chloride, whereas the highly phosphate-selective guanidinium receptor (U-Guan+) provides synergistic hydrogen-bonding and electrostatic interactions. Apparent binding constants were evaluated in situ for U-Ammo+ and U-Guan+ using temperature-controlled infrared reflection-absorption spectroscopy with Langmuir-type fitting. Thermodynamic quantities showed enthalpically driven binding affinities of U-Guan+ and U-Ammo+ receptors (ΔH°b = -71 (±9) kJ/mol and ΔH°b = -155 (±13) kJ/mol, respectively). U-Guan+ revealed a nearly fourfold smaller entropic barrier to binding (ΔS°b = -132 (±34) J/mol K) than the U-Ammo+ receptor (ΔS°b = -440 (±45) J/mol K), attributed to hydration differences. The larger entropic penalty for the U-Ammo+ receptor is correlated with a molecular expansion shown in surface pressure-area isotherms, whereas the smaller entropic penalty of the U-Guan+ receptor conversely correlated with no expansion. The U-Guan+ receptor also revealed anti-Hofmeister selectivity for phosphate over chloride, while the non-hydrogen-bonding U-Ammo+ receptor followed Hofmeister selectivity. Our results indicate that hydrogen bonding is an integral chemical design element for achieving anti-Hofmeister selectivity for phosphate.

5.
Org Biomol Chem ; 17(41): 9124-9128, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31573016

RESUMO

In the presence of SiCl4, three molecules of 5'-bromo-2'-hydroxyacetophenone underwent an unexpected tandem aldol condensation to give a novel isospiropyran switch (69%), with X-ray crystallography confirming its structure. The strong Brønsted acid CH3SO3H turned the colorless isospiropyran into its protonated and open form possessing red color. This process was reversed using the Et3N base, with the acid/base toggling repeatable for at least six times (UV-Vis). When printed on a silica plate, however, the isospiropyran formed a blue-colored product due to, as posited, its stabilization by hydrogen bonding (HB) to silica. An exposure to HB-competing ethyl acetate temporarily "erased" the print only to be brought back by subjecting the plate to a higher temperature for evaporating the solvent. The isospiropyran described here is an easily accessible, chromic, modular and switchable compound that one can incorporate into dynamic materials or use for building chemosensors, molecular machines and organic electronic devices.

6.
J Am Chem Soc ; 141(19): 7876-7886, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31025857

RESUMO

Phosphate remediation is important for preventing eutrophication in fresh waters and maintaining water quality. One approach for phosphate removal involves the utilization of molecular receptors. However, our understanding of anion recognition in aqueous solution and at aqueous interfaces is underdeveloped, and the rational design of surface-immobilized receptors is still largely unexplored. Herein, we evaluated the driving forces controlling phosphate binding to elementary amphiphilic receptors anchored at air-water interfaces. We designed biologically inspired receptors with neutral thiourea, positively charged guanidinium, and thiouronium units that all formed Langmuir monolayers. Phosphate binding was quantitatively examined using surface pressure-area isotherms and infrared reflection-absorption spectroscopy (IRRAS). The receptors within this homologous series differ in functional group, charge, and number of alkyl chains to help distinguish the fundamental components influencing anion recognition at aqueous interfaces. The two charged receptors bearing two alkyl chains each displayed strong phosphate affinities and 103- and 101-fold anti-Hofmeister selectivity over chloride, respectively. Neutral thiourea and the single-chain guanidinium receptor did not bind phosphate, revealing the importance of electrostatic interactions and supramolecular organization. Consistently, charge screening at high ionic strength weakens binding. Spectroscopic results confirmed phosphate binding to the double alkyl chain guanidinium receptor, whereas surface pressure isotherm results alone showed a minimal change, thus emphasizing the importance of interfacial spectroscopy. We found that the binding site identity, charged interface created by the electrical double layer, and supramolecular superstructure all affect interfacial binding. These detailed insights into phosphate recognition at aqueous interfaces provide a foundation to develop efficient receptors for phosphate capture.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Fosfatos/química , Água/química , Ar , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...