Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Pathol ; 71(4): 949-965, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35909801

RESUMO

Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.

2.
Microorganisms ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207283

RESUMO

Bacterial canker of Prunus, affecting economically important stone fruit crops including cherry, peach, apricot and plum, is caused by the plant pathogen Pseudomonas syringae (P.s.). Strains from two pathovars-P.s. pv. syringae (Pss) and P.s. pv. morsprunorum race 1 (PsmR1) and 2 (PsmR2)-in three phylogenetically distant clades have convergently evolved to infect Prunus. The bacteria enter woody tissues through wounds and leaf scars, causing black necrotic cankers. Symptoms are also produced on blossom, fruit and leaves. Little is known about the mechanisms P.s. uses to colonise tree hosts such as Prunus. Here, we created transposon (Tn) mutant libraries in one strain of P.s. from each of the three clades and screened the mutants on immature cherry fruit to look for changes in virulence. Mutants (242) with either reduced or enhanced virulence were detected and further characterised by in vitro screens for biofilm formation, swarming ability, and pathogenicity on leaves and cut shoots. In total, 18 genes affecting virulence were selected, and these were involved in diverse functions including motility, type III secretion, membrane transport, amino acid synthesis, DNA repair and primary metabolism. Interestingly, mutation of the effector gene, hopAU1, led to an increase in virulence of Psm R2.

3.
J Microbiol Methods ; 177: 106025, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795634

RESUMO

In order to achieve saturating transposon mutagenesis of the genome of plant pathogenic strains of Pseudomonas syringae we needed to improve plasmid conjugation frequency. Manipulation of the growth stage of donor and recipient cells allowed the required increase in frequency and facilitated conjugation of otherwise recalcitrant strains.


Assuntos
Técnicas Bacteriológicas/métodos , Conjugação Genética , Pseudomonas syringae/genética , DNA Bacteriano , Técnicas Genéticas , Recombinação Genética
4.
Mol Microbiol ; 110(3): 444-454, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152900

RESUMO

The plant pathogen Pseudomonas syringae pv. phaseolicola, which causes halo blight disease of beans, contains a 106 kb genomic island PPHGI-1. PPHGI-1 carries a gene, avrPphB, which encodes an effector protein that triggers a resistance response in certain bean cultivars. Previous studies have shown that when PPHGI-1 is excised from the bacterial chromosome, avrPphB is downregulated and therefore the pathogen avoids triggering the host's defence mechanism. Here, we investigate whether the downregulation of avrPphB is caused by the supercoiling of PPHGI-1. We also investigate the effect of a PPHGI-1-encoded type 1A topoisomerase, TopB3, on island stability and bacterial pathogenicity in the plant. Supercoiling inhibitors significantly increased the expression of avrPphB but did not affect the excision of PPHGI-1. An insertional mutant of topB3 displayed an increase in avrPphB expression and an increase in PPHGI-1 excision as well as reduced population growth in resistant and susceptible cultivars of bean. These results suggest an important role for topoisomerases in the maintenance and stability of a bacterial-encoded genomic island and demonstrate that supercoiling is involved in the downregulation of an effector gene once the island has been excised, allowing the pathogen to prevent further activation of the host defence response.


Assuntos
Proteínas de Bactérias/biossíntese , DNA Topoisomerases/metabolismo , DNA Bacteriano/química , DNA Super-Helicoidal/química , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Pseudomonas syringae/genética , Proteínas de Bactérias/imunologia , DNA Topoisomerases/genética , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , Instabilidade Genômica , Mutagênese Insercional , Phaseolus/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Fatores de Virulência/biossíntese , Fatores de Virulência/imunologia
5.
Environ Microbiol ; 18(11): 4144-4152, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27491006

RESUMO

The co-evolution of bacterial plant pathogens and their hosts is a complex and dynamic process. Host resistance imposes stress on invading pathogens that can lead to changes in the bacterial genome enabling the pathogen to escape host resistance. We have observed this phenomenon with the plant pathogen Pseudomonas syringae pv. phaseolicola where isolates that have lost the genomic island PPHGI-1 carrying the effector gene avrPphB from its chromosome are infective against previously resistant plant hosts. However, we have never observed island extinction from the pathogen population within a host suggesting the island is maintained. Here, we present a mathematical model which predicts different possible fates for the island in the population; one outcome indicated that PPHGI-1 would be maintained at low frequency in the population long term, if it confers a fitness benefit. We empirically tested this prediction and determined that PPHGI-1 frequency in the bacterial population drops to a low but consistently detectable level during host resistance. Once PPHGI-1-carrying cells encounter a susceptible host, they rapidly increase in the population in a negative frequency-dependent manner. Importantly, our data show that mobile genetic elements can persist within the bacterial population and increase in frequency under favourable conditions.


Assuntos
Ilhas Genômicas , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plantas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/metabolismo
6.
Plant Cell Environ ; 39(10): 2172-84, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27239727

RESUMO

The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of P. syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K(+) , that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca(2+) , Fe(2/3+) Mg(2+) , sucrose, ß-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.


Assuntos
Interações Hospedeiro-Patógeno , Phaseolus/microbiologia , Pseudomonas syringae/fisiologia , Metabolômica , Phaseolus/imunologia , Phaseolus/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia
7.
Sci Transl Med ; 7(319): 319ra205, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26702093

RESUMO

The lipid chaperone aP2/FABP4 has been implicated in the pathology of many immunometabolic diseases, including diabetes in humans, but aP2 has not yet been targeted for therapeutic applications. aP2 is not only an intracellular protein but also an active adipokine that contributes to hyperglycemia by promoting hepatic gluconeogenesis and interfering with peripheral insulin action. Serum aP2 levels are markedly elevated in mouse and human obesity and strongly correlate with metabolic complications. These observations raise the possibility of a new strategy to treat metabolic disease by targeting serum aP2 with a monoclonal antibody (mAb) to aP2. We evaluated mAbs to aP2 and identified one, CA33, that lowered fasting blood glucose, improved systemic glucose metabolism, increased systemic insulin sensitivity, and reduced fat mass and liver steatosis in obese mouse models. We examined the structure of the aP2-CA33 complex and resolved the target epitope by crystallographic studies in comparison to another mAb that lacked efficacy in vivo. In hyperinsulinemic-euglycemic clamp studies, we found that the antidiabetic effect of CA33 was predominantly linked to the regulation of hepatic glucose output and peripheral glucose utilization. The antibody had no effect in aP2-deficient mice, demonstrating its target specificity. We conclude that an aP2 mAb-mediated therapeutic constitutes a feasible approach for the treatment of diabetes.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas de Ligação a Ácido Graxo/imunologia , Tecido Adiposo/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Composição Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/química , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Glucose/metabolismo , Humanos , Insulina/farmacologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Obesos
8.
PLoS One ; 10(9): e0137355, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325299

RESUMO

The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph) colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms) around plant cells. If the pathogen can suppress the plant's natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn) mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP) genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Plantas/microbiologia , Pseudomonas syringae/genética , Aderência Bacteriana , Teste de Complementação Genética , Mutação , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/patogenicidade , Virulência
9.
MAbs ; 6(3): 774-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24670876
10.
Plasmid ; 70(3): 420-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23895800

RESUMO

Pseudomonas syringae pv. phaseolicola (Pph) strain 1302A, a causative agent of halo blight in the common bean Phaseolus vulgaris, contains four native plasmids designated pAV505 (150 kb), pAV506 (50 kb), pAV507 (47 kb) and pAV508 (42 kb). Pph 1302A also contains a 106 kb genomic island PPHGI-1 which shares features with integrative and conjugative elements (ICElands) and carries the effector gene avrPphB (hopAR1) which triggers a defensive response in bean cultivars carrying the matching R3 resistance gene. It has been shown that when Pph 1302A is sequentially inoculated (passaged) through resistant bean cultivar Tendergreen (TG) in which the hypersensitive response (HR) is generated, the three largest plasmids are lost and an extra ∼100 kb plasmid is gained, which tests confirmed to be the 106 kb circular form of PPHGI-1. The aim of the current study was to determine if upon further passaging though bean plants, the plasmid profile of Pph 1302A would alter again and if the missing plasmids had been integrated into the chromosome. Pph 1302A-P6, the strain with the altered plasmid profile was passaged twice through TG and of the four re-isolated strains examined all displayed the plasmid profile associated with wildtype Pph 1302A, that is, all four native plasmids had reappeared and the PPHGI-1 plasmid was absent. This demonstrated that the plasmid composition of Pph 1302A-P6 could indeed change on further exposure to the plant environment and also that the seemingly missing native plasmids were still present within the genome, lending evidence to the theory that they had integrated into the chromosome. Furthermore two of these re-isolated strains had lost PPHGI-1 entirely, meaning they no longer triggered a HR on TG and instead generated a disease response. This study clearly demonstrates the plasticity of the bacterial genome and the extent it can be influenced by the plant environment and conditions generated during the HR.


Assuntos
Cromossomos Bacterianos , DNA Bacteriano/genética , Genoma Bacteriano , Plasmídeos , Pseudomonas syringae/genética , Ilhas Genômicas , Interações Hospedeiro-Patógeno , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Virulência
11.
Immunobiology ; 210(2-4): 109-19, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16164017

RESUMO

Colony-stimulating factor-1 (CSF-1) regulates the survival, proliferation and differentiation of macrophages. CSF-1-deficient mice are osteopetrotic due to a lack of osteoclasts, while their tissue macrophage deficiencies and an absence of CSF-1 regulation of CSF-1 receptor-expressing cells in the female reproductive tract contribute to their pleiotropic phenotype. To further understand CSF-1 regulation of macrophages in vivo, we developed a neutralizing anti-mouse CSF-1 antibody which was expressed as a recombinant Fab' fragment and coupled to 40 kDa polyethylene glycol. As developmental regulation by CSF-1 is highest during the early post-natal period, the ability of this anti-CSF-1 reagent to inhibit development was tested by regular subcutaneous injection of mice from post-natal days 0.5-57.5. Antibody treatment decreased growth rate, decreased osteoclast number, induced osteopetrosis, decreased macrophage density in bone marrow, liver, dermis, synovium and kidney and decreased adipocyte size in adipose tissue, thereby inducing phenotypes shared by CSF-1- and CSF-1 receptor-deficient mice. While the antibody blocked macrophage development in some tissues, macrophage densities in other tissues were initially high and were reduced by treatment, proving that the antibody also blocked macrophage maintenance. Since cell surface CSF-1 is sufficient for the maintenance of normal synovial macrophage densities, these studies suggest that anti-CSF-1 Fab'-PEG efficiently neutralizes all three CSF-1 isoforms in vivo, namely the secreted proteoglycan, secreted glycoprotein and cell surface glycoprotein. Since CSF-1 has been shown to enhance chronic disease development in a number of mouse model systems, these studies demonstrate the feasibility of neutralizing CSF-1 effects in these models with an anti-CSF-1 antibody.


Assuntos
Sistema Imunitário/crescimento & desenvolvimento , Fragmentos Fab das Imunoglobulinas/farmacologia , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Sistema Imunitário/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/imunologia , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteopetrose/etiologia , Osteopetrose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...