Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38770058

RESUMO

Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.

2.
Angew Chem Int Ed Engl ; 63(20): e202403884, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489233

RESUMO

Abiotic CH4 production driven by Fenton-type reactive oxygen species (ROS) has been confirmed to be an indispensable component of the atmospheric CH4 budget. While the chemical reactions independent of Fenton chemistry to ROS are ubiquitous in nature, it remains unknown whether the produced ROS can drive abiotic CH4 production. Here, we first demonstrated the abiotic CH4 production at the soil-water interface under illumination. Leveraging this finding, polymeric carbon nitrides (CNx) as a typical analogue of natural geobattery material and dimethyl sulfoxide (DMSO) as a natural methyl donor were used to unravel the underlying mechanisms. We revealed that the ROS, photocatalytically produced by CNx, can oxidize DMSO into CH4 with a high selectivity of 91.5 %. Such an abiotic CH4 production process was further expanded to various non-Fenton-type reaction systems, such as electrocatalysis, pyrocatalysis and sonocatalysis. This work provides insights into the geochemical cycle of abiotic CH4, and offers a new route to CH4 production via integrated energy development.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37788887

RESUMO

One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.

4.
Front Microbiol ; 14: 1179857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520355

RESUMO

The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.

5.
Proc Natl Acad Sci U S A ; 120(27): e2308206120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343052
6.
Environ Sci Technol ; 57(15): 6196-6204, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36997849

RESUMO

Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Geobacter , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Ativação Viral
7.
ISME J ; 17(5): 712-719, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36823233

RESUMO

Anaerobic reduction processes in natural waters can be promoted by dead microalgae that have been attributed to nutrient substances provided by the decomposition of dead microalgae for other microorganisms. However, previous reports have not considered that dead microalgae may also serve as photosensitizers to drive microbial reduction processes. Here we demonstrate a photoelectric synergistic linkage between dead microalgae and bacteria capable of extracellular electron transfer (EET). Illumination of dead Raphidocelis subcapitata resulted in two-fold increase in the rate of anaerobic bioreduction by pure Geobacter sulfurreducens, suggesting that photoelectrons generated from the illuminated dead microalgae were transferred to the EET-capable microorganisms. Similar phenomena were observed in NO3- reduction driven by irradiated dead Chlorella vulgaris and living Shewanella oneidensis, and Cr(VI) reduction driven by irradiated dead Raphidocelis subcapitata and living Bacillus subtilis. Enhancement of bioreduction was also seen when the killed microalgae were illuminated in mixed-culture lake water, suggesting that EET-capable bacteria were naturally present and this phenomenon is common in post-bloom systems. The intracellular ferredoxin-NADP+-reductase is inactivated in the dead microalgae, allowing the production and extracellular transfer of photoelectrons. The use of mutant strains confirmed that the electron transport pathway requires multiheme cytochromes. Taken together, these results suggest a heretofore overlooked biophotoelectrochemical process jointly mediated by illumination of dead microalgae and live EET-capable bacteria in natural ecosystems, which may add an important component in the energetics of bioreduction phenomena particularly in microalgae-enriched environments.


Assuntos
Clorofíceas , Geobacter , Microalgas , Fotossíntese , Microalgas/química , Microalgas/metabolismo , Transporte de Elétrons , Clorofíceas/química , Clorofíceas/metabolismo , Geobacter/química , Geobacter/metabolismo , Geobacter/efeitos da radiação , Compostos Azo/química , Compostos Azo/metabolismo , Oxirredução , Anaerobiose , Deleção de Genes
8.
ISME J ; 17(1): 163-171, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261509

RESUMO

Anaerobic microbial manganese oxidation (AMMO) has been considered an ancient biological metabolism for Mn element cycling on Archaean Earth before the presence of oxygen. A light-dependent AMMO was recently observed under strictly anoxic conditions, providing a new proxy for the interpretation of the evolution of oxygenic photosynthesis. However, the feasibility of biotic Mn(II) oxidation in dark geological habitats that must have been abundant remains unknown. Therefore, we discovered that it would be possible to achieve AMMO in a light-independent electrosyntrophic coculture between Rhodopseudomonas palustris and Geobacter metallireducens. Transmission electron microscopy analysis revealed insoluble particle formation in the coculture with Mn(II) addition. X-ray diffraction and X-ray photoelectron spectroscopy analysis verified that these particles were a mixture of MnO2 and Mn3O4. The absence of Mn oxides in either of the monocultures indicated that the Mn(II)-oxidizing activity was induced via electrosyntrophic interactions. Radical quenching and isotopic experiments demonstrated that hydroxyl radicals (•OH) produced from H2O dissociation by R. palustris in the coculture contributed to Mn(II) oxidation. All these findings suggest a new, symbiosis-dependent and light-independent AMMO route, with potential importance to the evolution of oxygenic photosynthesis and the biogeochemical cycling of manganese on Archaean and modern Earth.


Assuntos
Compostos de Manganês , Manganês , Manganês/metabolismo , Compostos de Manganês/química , Compostos de Manganês/metabolismo , Óxidos/metabolismo , Anaerobiose , Técnicas de Cocultura , Oxirredução , Oxigênio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35194649

RESUMO

Magnetotactic bacteria (MTB) are a diverse group of highly motile Gram-negative microorganisms with the common ability to orient along magnetic field lines, a behavior known as magnetotaxis. Ubiquitous in aquatic sediment environments, MTB are often microaerophilic and abundant at the oxic/anoxic interface. Magnetic field sensing is accomplished using intracellular, membrane-encased, iron-containing minerals known as magnetosomes. The chemistry, morphology and arrangement of magnetosomes differs substantially among different MTB. Although magnetic field sensing mechanisms, genetic bases and protein functions have been elucidated in select model organisms such as the Magnetospirillum strains and Desulfovibrio RS-1, not all findings are applicable to diverse clades of MTB. As the number of identified species has increased, it has become evident that many of the characteristics and mechanisms once presumed to be prototypical of MTB are in fact not universal. Here we present a general overview of the current state of MTB research for readers outside of the realm of prokaryotic research, focusing on recent discoveries, knowledge gaps and future directions. In addition, we report new insights acquired using holographic technology to observe and quantify microbial responses in magnetic fields that are earth-strength or weaker, providing a new ecophysiological approach to in situ MTB research.


Assuntos
Magnetossomos , Microscopia , Animais , Bactérias/genética , Magnetossomos/química , Magnetossomos/genética , Magnetossomos/metabolismo , Filogenia
11.
Environ Res ; 210: 112910, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151659

RESUMO

The biorecovery of gold (Au) by microbial reduction has received increasing attention, however, the biomolecules involved and the mechanisms by which they operate to produce Au nanoparticles have been not resolved. Here we report that Burkholderia contaminans ZCC is capable of reduction of Au(III) to Au nanoparticles on the cell surface. Exposure of B. contaminans ZCC to Au(III) led to significant changes in the functional group of cell proteins, with approximately 11.1% of the (C-C/C-H) bonds being converted to CO (8.1%) and C-OH (3.0%) bonds and 29.4% of the CO bonds being converted to (C-OH/C-O-C/P-O-C) bonds, respectively. In response to Au(III), B. contaminans ZCC also displayed the ability of extracellular electron transfer (EET) via membrane proteins and could produce reduced riboflavin as verified by electrochemical and liquid chromatography-mass spectrometric results, but did not do so without Au(III) being present. Addition of exogenous reduced riboflavin to the medium suggested that B. contaminans ZCC could utilize indirect EET via riboflavin to enhance the rate of reduction of Au(III). Transcriptional analysis of the riboflavin genes (ribBDEFH) supported the view of the importance of riboflavin in the reduction of Au(III) and its importance in the biorecovery of gold.


Assuntos
Ouro , Nanopartículas Metálicas , Burkholderia , Elétrons , Riboflavina
12.
ISME J ; 16(2): 370-377, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341507

RESUMO

The direct conversion of CO2 to value-added chemical commodities, thereby storing solar energy, offers a promising option for alleviating both the current energy crisis and global warming. Semiconductor-biological hybrid systems are novel approaches. However, the inherent defects of photocorrosion, photodegradation, and the toxicity of the semiconductor limit the application of these biohybrid systems. We report here that Rhodopseudomonas palustris was able to directly act as a living photosensitizer to drive CO2 to CH4 conversion by Methanosarcina barkeri under illumination after coculturing. Specifically, R. palustris formed a direct electric syntrophic coculture with M. barkeri. Here, R. palustris harvested solar energy, performed anoxygenic photosynthesis using sodium thiosulfate as an electron donor, and transferred electrons extracellularly to M. barkeri to drive methane generation. The methanogenesis of M. barkeri in coculture was a light-dependent process with a production rate of 4.73 ± 0.23 µM/h under light, which is slightly higher than that of typical semiconductor-biohybrid systems (approximately 4.36 µM/h). Mechanistic and transcriptomic analyses showed that electrons were transferred either directly or indirectly (via electron shuttles), subsequently driving CH4 production. Our study suggests that R. palustris acts as a natural photosensitizer that, in coculture with M. barkeri, results in a new way to harvest solar energy that could potentially replace semiconductors in biohybrid systems.


Assuntos
Metano , Methanosarcina barkeri , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Metano/metabolismo , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Fotossíntese
13.
Front Microbiol ; 12: 667944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539592

RESUMO

Microbial iron cycling influences the flux of major nutrients in the environment (e.g., through the adsorptive capacity of iron oxides) and includes biotically induced iron oxidation and reduction processes. The ecological extent of microbial iron cycling is not well understood, even with increased sequencing efforts, in part due to limitations in gene annotation pipelines and limitations in experimental studies linking phenotype to genotype. This is particularly true for the marine subseafloor, which remains undersampled, but represents the largest contiguous habitat on Earth. To address this limitation, we used FeGenie, a database and bioinformatics tool that identifies microbial iron cycling genes and enables the development of testable hypotheses on the biogeochemical cycling of iron. Herein, we survey the microbial iron cycle in diverse subseafloor habitats, including sediment-buried crustal aquifers, as well as surficial and deep sediments. We inferred the genetic potential for iron redox cycling in 32 of the 46 metagenomes included in our analysis, demonstrating the prevalence of these activities across underexplored subseafloor ecosystems. We show that while some processes (e.g., iron uptake and storage, siderophore transport potential, and iron gene regulation) are near-universal, others (e.g., iron reduction/oxidation, siderophore synthesis, and magnetosome formation) are dependent on local redox and nutrient status. Additionally, we detected niche-specific differences in strategies used for dissimilatory iron reduction, suggesting that geochemical constraints likely play an important role in dictating the dominant mechanisms for iron cycling. Overall, our survey advances the known distribution, magnitude, and potential ecological impact of microbe-mediated iron cycling and utilization in sub-benthic ecosystems.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34379584

RESUMO

Three highly alkaliphilic bacterial strains designated as A1T, H1T and B1T were isolated from two highly alkaline springs at The Cedars, a terrestrial serpentinizing site. Cells from all strains were motile, Gram-negative and rod-shaped. Strains A1T, H1T and B1T were mesophilic (optimum, 30 °C), highly alkaliphilic (optimum, pH 11) and facultatively autotrophic. Major cellular fatty acids were saturated and monounsaturated hexadecenoic and octadecanoic acids. The genome size of strains A1T, H1T and B1T was 2 574 013, 2 475 906 and 2 623 236 bp, and the G+C content was 66.0, 66.2 and 66.1 mol%, respectively. Analysis of the 16S rRNA genes showed the highest similarity to the genera Malikia (95.1-96.4 %), Macromonas (93.0-93.6 %) and Hydrogenophaga (93.0-96.6 %) in the family Comamonadaceae. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on core gene sequences revealed that the isolated strains diverged from the related species, forming a distinct branch. Average amino acid identity values of strains A1T, H1T and B1T against the genomes of related members in this family were below 67 %, which is below the suggested threshold for genera boundaries. Average nucleotide identity by blast values and digital DNA-DNA hybridization among the three strains were below 92.0 and 46.6 % respectively, which are below the suggested thresholds for species boundaries. Based on phylogenetic, genomic and phenotypic characterization, we propose Serpentinimonas gen. nov., Serpentinimonas raichei sp. nov. (type strain A1T=NBRC 111848T=DSM 103917T), Serpentinimonas barnesii sp. nov. (type strain H1T= NBRC 111849T=DSM 103920T) and Serpentinimonas maccroryi sp. nov. (type strain B1T=NBRC 111850T=DSM 103919T) belonging to the family Comamonadaceae. We have designated Serpentinimonas raichei the type species for the genus because it is the dominant species in The Cedars springs.


Assuntos
Comamonadaceae , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Environ Sci Technol ; 55(14): 10142-10151, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34196176

RESUMO

Direct interspecies electron transfer (DIET) between microbial species prevails in some key microbial consortia. However, the electron transfer mechanism(s) in these consortia is controversial due to lack of efficient characterization methods. Here, we provide an in situ anaerobic spectroelectrochemical coculture cell (in situ ASCC) to induce the formation of DIET coculture biofilm on the interdigitated microelectrode arrays and characterize the electron transfer directly. Two typical Geobacter DIET cocultures, Geobacter metallireducens and wild-type Geobacter sulfurreducens (G.m&G.s) and G. metallireducens and a G. sulfurreducens strain deficient in citrate synthase (G.m&G.s-ΔgltA), were selected. In situ Raman and electrochemical Fourier transform infrared (FTIR) spectroscopy indicated that cytochromes are abundant in the electric syntrophic coculture. Cyclic voltammetry and potential step experiment revealed a diffusion-controlled electron transfer process and the electrochemical gating measurements further demonstrated a cytochrome-mediated electron transfer in the DIET coculture. Furthermore, the G.m&G.s-ΔgltA coculture displayed a higher redox conductivity than the G.m&G.s coculture, consistent with the existence of an intimate and efficient electrical connection between these two species. Our findings provide the first report of a redox-gradient-driven electron transport facilitated by c-type cytochromes in DIET coculture, supporting the model that DIET is mediated by cytochromes and suggest a platform to explore the other DIET consortia.


Assuntos
Geobacter , Técnicas de Cocultura , Citocromos/metabolismo , Transporte de Elétrons , Geobacter/metabolismo , Oxirredução
16.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215588

RESUMO

In natural anoxic environments, anoxygenic photosynthetic bacteria fix CO2 by photoheterotrophy, photoautotrophy, or syntrophic anaerobic photosynthesis. Here, we describe electroautotrophy, a previously unidentified dark CO2 fixation mode enabled by the electrosyntrophic interaction between Geobacter metallireducens and Rhodopseudomonas palustris. After an electrosyntrophic coculture is formed, electrons are transferred either directly or indirectly (via electron shuttles) from G. metallireducens to R. palustris, thereby providing reducing power and energy for the dark CO2 fixation. Transcriptomic analyses demonstrated the high expression of genes encoding for the extracellular electron transfer pathway in G. metallireducens and the Calvin-Benson-Bassham carbon fixation cycle in R. palustris Given that sediments constitute one of the most ubiquitous and abundant niches on Earth and that, at depth, most of the sedimentary niche is both anoxic and dark, dark carbon fixation provides a metabolic window for the survival of anoxygenic phototrophs, as well as an as-yet unappreciated contribution to the global carbon cycle.

17.
Geobiology ; 19(6): 618-630, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34105248

RESUMO

Iron is a micronutrient critical to fundamental biological processes including respiration and photosynthesis, and it can therefore impact primary and heterotrophic productivity. Yet in oxic environments, iron is highly insoluble, rendering it, in principle, unavailable as a nutrient for biological growth. Life has "solved" this problem via the invention of iron chelates, known as siderophores, that keep iron available for microbial productivity. In this work, we examined the impact of siderophore synthesis on the speciation, mobility, and bioavailability of iron from rock-forming silicate minerals-shedding new light on the mechanisms by which microbes use mineral substrates to support primary productivity, as well as the consequent effects on silicate dissolution. Growth experiments were performed with Shewanella oneidensis MR-1 in an oxic, iron-depleted minimal medium, amended with olivine minerals as the sole source of iron. Experiments included the wild-type strain MR-1, and a siderophore synthesis gene deletion mutant strain (ΔMR-1). Relative to MR-1, ΔMR-1 exhibited a very pronounced growth penalty and an extended lag phase. However, substantial growth of ΔMR-1, comparable to MR-1 growth, was observed when the mutant strain was provided with siderophores in the form of either filtrate from a well-grown MR-1 culture, or commercially available deferoxamine. These observations suggest that siderophores are critical for S. oneidensis to acquire iron from olivine. Growth-limiting concentrations of deferoxamine amendments were observed to be ≤5-10 µM, concentrations significantly lower than previously recorded as necessary to impact mineral dissolution rates. X-ray photoelectric spectroscopy analyses of the incubated olivine surfaces suggest that siderophores deplete mineral surface layers of ferric iron. Combined, these results demonstrate that low micromolar concentrations of siderophores can effectively mobilize iron bound within silicate minerals, supporting very significant biological growth in limiting environments. The specific mechanism would involve siderophores removing a protective layer of nanometer-thick iron oxides, enhancing silicate dissolution and nutrient bioavailability.


Assuntos
Fenômenos Biológicos , Sideróforos , Disponibilidade Biológica , Ferro , Compostos de Ferro , Compostos de Magnésio , Minerais , Nutrientes , Shewanella , Silicatos
18.
mBio ; 13(1): e0382221, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164556

RESUMO

Conductive nanowires are thought to contribute to long-range electron transfer (LET) in Geobacter sulfurreducens anode biofilms. Three types of nanowires have been identified: pili, OmcS, and OmcZ. Previous studies highlighted their conductive function in anode biofilms, yet a structural function also has to be considered. We present here a comprehensive analysis of the function of nanowires in LET by inhibiting the expression of each nanowire. Meanwhile, flagella with poor conductivity were expressed to recover the structural function but not the conductive function of nanowires in the corresponding nanowire mutant strain. The results demonstrated that pili played a structural but not a conductive function in supporting biofilm formation. In contrast, the OmcS nanowire played a conductive but not a structural function in facilitating electron transfer in the biofilm. The OmcZ nanowire played both a structural and a conductive function to contribute to current generation. Expression of the poorly conductive flagellum was shown to enhance biofilm formation, subsequently increasing current generation. These data support a model in which multiheme cytochromes facilitate long-distance electron transfer in G. sulfurreducens biofilms. Our findings also suggest that the formation of a thicker biofilm, which contributed to a higher current generation by G. sulfurreducens, was confined by the biofilm formation deficiency, and this has applications in microbial electrochemical systems. IMPORTANCE The low power generation of microbial fuel cells limits their utility. Many factors can affect power generation, including inefficient electron transfer in the anode biofilm. Thus, understanding the mechanism(s) of electron transfer provides a pathway for increasing the power density of microbial fuel cells. Geobacter sulfurreducens was shown to form a thick biofilm on the anode. Cells far away from the anode reduce the anode through long-range electron transfer. Based on their conductive properties, three types of nanowires have been hypothesized to directly facilitate long-range electron transfer: pili, OmcS, and OmcZ nanowires. However, their structural contributions to electron transfer in anode biofilm have not been elucidated. Based on studies of mutants lacking one or more of these facilitators, our results support a cytochrome-mediated electron transfer process in Geobacter biofilms and highlight the structural contribution of nanowires in anode biofilm formation, which contributes to biofilm formation and current generation, thereby providing a strategy to increase current generation.


Assuntos
Geobacter , Nanofios , Geobacter/metabolismo , Transporte de Elétrons , Biofilmes , Citocromos/metabolismo
19.
Front Microbiol ; 11: 1031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655506

RESUMO

Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.5-11), located in Nagano (Japan), which are impacted by the serpentinization process. Analysis of the 16S rRNA gene amplicon sequences revealed that the bacterial community comprises Nitrospirae (47%), "Parcubacteria" (19%), Deinococcus-Thermus (16%), and Actinobacteria (9%), among others. Notably, only 57 amplicon sequence variants (ASV) were detected, and fifteen of these accounted for 90% of the amplicons. Among the abundant ASVs, an early-branching, uncultivated actinobacterial clade identified as RBG-16-55-12 in the SILVA database was detected. Ten single-cell genomes (average pairwise nucleotide identity: 0.98-1.00; estimated completeness: 33-93%; estimated genome size: ∼2.3 Mb) that affiliated with this clade were obtained. Taxonomic classification using single copy genes indicates that the genomes belong to the actinobacterial class-level clade UBA1414 in the Genome Taxonomy Database. Based on metabolic pathway predictions, these actinobacteria are anaerobes, capable of glycolysis, dissimilatory nitrate reduction and CO2 fixation via the Wood-Ljungdahl (WL) pathway. Several other genomes within UBA1414 and two related class-level clades also encode the WL pathway, which has not yet been reported for the Actinobacteria phylum. For the Hakuba actinobacterium, the energy metabolism related to the WL pathway is likely supported by a combination of the Rnf complex, group 3b and 3d [NiFe]-hydrogenases, [FeFe]-hydrogenases, and V-type (H+/Na+ pump) ATPase. The genomes also harbor a form IV ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, also known as a RubisCO-like protein, and contain signatures of interactions with viruses, including clustered regularly interspaced short palindromic repeat (CRISPR) regions and several phage integrases. This is the first report and detailed genome analysis of a bacterium within the Actinobacteria phylum capable of utilizing the WL pathway. The Hakuba actinobacterium is a member of the clade UBA1414/RBG-16-55-12, formerly within the group "OPB41." We propose to name this bacterium 'Candidatus Hakubanella thermoalkaliphilus.'

20.
Front Microbiol ; 11: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082281

RESUMO

Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...