Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917498

RESUMO

Many applications require galvanic isolation between the circuit where the current is flowing and the measurement device. While for AC, the current transformer is the method of choice, in DC and, especially for low currents, other sensing methods must be used. This paper aims to provide a practical method of improving the sensitivity and linearity of a giant magnetoresistance (GMR)-based current sensor by adapting a set of design rules and methods easy to be implemented. Our approach utilizes a multi-trace current trace and a double differential GMR based detection system. This essentially constitutes a planar coil which would effectively increase the usable magnetic field detected by the GMR sensor. An analytical model is developed for calculating the magnetic field generated by the current in the GMR sensing area which showed a significant increase in sensitivity up to 13 times compared with a single biased sensor. The experimental setup can measure both DC and AC currents between 2-300 mA, with a sensitivity between 15.62 to 23.19 mV/mA, for biasing fields between 4 to 8 Oe with a detection limit of 100 µA in DC and 100 to 300 µA in AC from 10 Hz to 50 kHz. Because of the double differential setup, the detection system has a high immunity to external magnetic fields and a temperature drift of the offset of about -2.59 × 10-4 A/°C. Finally, this setup was adapted for detection of magnetic nanoparticles (MNPs) which can be used to label biomolecules in lab-on-a-chip applications and preliminary results are reported.

2.
ScientificWorldJournal ; 2014: 265969, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683324

RESUMO

Zn1-x Ni x O (x = 0.03 ÷ 0.10) and Zn1-x Fe x O (x = 0.03 ÷ 0.15) thin films were synthesized by sol-gel method. The structure and the surface morphology of zinc oxide thin films doped with transition metal (TM) ions have been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magnetic studies were done using vibrating sample magnetometer (VSM) at room temperature. Experimental results revealed that the substitution of Ni ions in ZnO wurtzite lattice for the contents x = 0.03 ÷ 0.10 (Ni(2+)) leads to weak ferromagnetism of thin films. For Zn1-x Fe x O with x = 0.03 ÷ 0.05, the Fe(3+) ions are magnetic coupling by superexchange interaction via oxygen ions in wurtzite structure. For x = 0.10 ÷ 0.15 (Fe(3+)) one can observe the increasing of secondary phase of ZnFe2O4 spinel. The Zn0.9Fe0.1O film shows a superparamagnetic behavior due to small crystallite sizes and the net spin magnetic moments arisen from the interaction between the iron ions through an oxygen ion in the spinel structure.


Assuntos
Campos Magnéticos , Membranas Artificiais , Elementos de Transição/química , Óxido de Zinco/química , Íons , Teste de Materiais , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA