Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(12): 3400-3411, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155639

RESUMO

The development of general and more sustainable heterogeneous catalytic processes for Friedel-Crafts (FC) alkylation reactions is a key objective of interest for the synthesis of pharmaceuticals and commodity chemicals. Sustainable heterogeneous catalysis for the typical FC alkylation of an easily accessible carbonyl electrophile and arenes or with two different arene nucleophiles in one-pot is a prime challenge. Herein, we present a resolution to these issues through the design and utilization of a mesoporous silica catalyst that has been functionalized with sulfonic acid. For the synthesis of sulfonic acid-functionalized mesoporous silica (MSN-SO3H), thiol-functionalized mesoporous silica was first synthesized by the co-condensation method, followed by oxidation of the thiol functionality to the sulfonic acid group. Sulfonation of mesoporous silica was confirmed by 13C CP MAS NMR spectroscopy. Further, the devised heterogeneous catalysis using MSN-SO3H has been successfully employed in the construction of diverse polyalkanes including various bioactive molecules, viz arundine, tatarinoid-C, and late-stage functionalization of natural products like menthol and Eugenol. Further, we have utilized this sustainable technique to facilitate the formation of unsymmetrical C-S bonds in a one-pot fashion. In addition, the catalyst was successfully recovered and recycled for eight cycles, demonstrating the high sustainability and cost-effectiveness of this protocol for both academic and industrial applications.

2.
J Mater Chem B ; 11(10): 2234-2248, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794579

RESUMO

In this paper, macroporous antimicrobial polymeric gels (MAPGs) functionalized with active quaternary ammonium cations attached to varying hydrocarbon chain lengths have been fabricated. Apart from the change in the alkyl chain length attached to the quaternary ammonium cation, the amount of crosslinker was also varied during the fabrication of the macroporous gels. The prepared gels were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning electron microscopy (FE-SEM) and swelling studies. In addition, the mechanical properties of the fabricated macroporous gels were studied using compression and tensile testing. The antimicrobial activity of the gels has been determined for Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) as well as Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus). Antimicrobial activity, as well as the mechanical properties of the macroporous gels, was found to be influenced by the alkyl chain length attached to the quaternary ammonium cations as well as by the amount of crosslinker used for the fabrication of the gel. In addition, on increasing the alkyl chain length from C4 (butyl) to C8 (octyl), the effectiveness of the polymeric gels increased. It was observed that the gels derived using a tertiary amine (NMe2) containing monomer showed relatively low antimicrobial activity as compared to the gels obtained using quaternized monomers (C4 (butyl), C6 (hexyl), and C8 (octyl)). The gels based on the quaternized C8 monomer displayed the highest antimicrobial activity and mechanical stability as compared to the gels based on the C4 and C6 monomers.


Assuntos
Compostos de Amônio , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/química , Polímeros/química , Anti-Infecciosos/química , Metacrilatos/química , Cátions
3.
Sci Rep ; 8(1): 7965, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29785029

RESUMO

Access to clean and safe water supply remains inadequate in many developing countries. One of the key challenges is to remove pathogenic bacteria from the water supply via effective water disinfection technologies to prevent the spread of diseases and to ensure the safety of consumers. Herein, a highly effective point-of-use (on-demand) water disinfection technology, in the form of a polymeric scaffold called macroporous antimicrobial polymeric gel (MAPG), is demonstrated. MAPG is easy to fabricate, completely organic and possess inherent antimicrobial property which makes it non-reliant on inorganic compounds such as silver where the long-term toxicity remains unknown. MAPG is highly bactericidal and can disinfect bacteria-contaminated water (ca. 108 CFU mL-1) at a capacity of about >50 times the mass of the organic material used, inactivating >99% of both Gram-negative and Gram-positive bacteria including Escherichia coli, Vibrio cholerae and Staphylococcus aureus within 20 minutes of treatment. When fabricated in a syringe, MAPG eliminates E. coli from contaminated water source by >8.0 log10 reduction in bacteria counts (i.e., no viable bacteria were detected after treatment), and the syringe can be reused multiple times without losing potency. The MAPG technology is not only restricted to water disinfection but may also be applicable in other bacteria inactivation applications.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Desinfetantes/farmacologia , Testes Imediatos/estatística & dados numéricos , Polímeros/farmacologia , Purificação da Água/métodos , Géis , Microbiologia da Água
4.
Macromol Rapid Commun ; 39(19): e1800169, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29749016

RESUMO

The synthesis of crosslinked polymeric microspheres (3.8-15.0 µm) via (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) initiated thiol-ene dispersion polymerization under ambient conditions is reported for the first time. The initiating ability of TEMPO for the thiol-ene reaction is validated by electron paramagnetic resonance (EPR) and 1 H nuclear magnetic resonance (NMR) spectroscopy on model reactions between 1-octadecanethiol and two electron deficient enes, n-butylacrylate and divinyl sulfone. Critically, the TEMPO resonance observed in the EPR spectra decreases with time when TEMPO is mixed with thiol and an electron deficient ene. The 1 H NMR spectra demonstrate formation of up to 90% of thioether under ambient conditions. Based on these model reactions, a variety of crosslinked polymeric microspheres are synthesized with excellent morphological stability using poly(vinyl pyrrolidone) as surfactant. The ability of the microspheres for a second TEMPO initiated thiol-ene reaction is demonstrated by the ligation of fluorescein-5-maleimide (an ene) to the microspheres' surface containing excess of thiol functionality and by ligation of cysteine (containing a thiol group) to the microspheres' surface containing an excess of ene functionality. The synthesized polymeric microspheres are characterized using scanning electron microscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy, zeta potential, and X-ray photoelectron spectroscopy.


Assuntos
Microesferas , Piperidinas/química , Povidona/química
5.
Polymers (Basel) ; 8(6)2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979328

RESUMO

Smart hydrogels are promising materials for actuators and sensors, as they can respond to small changes in their environment with a large property change. Hydrogels can respond to a variety of stimuli, for example temperature, pH, metal ions, etc. In this article, the synthesis and characterization of polyampholyte hydrogels based on open chain ligands showing pH and metal ion sensitivity are described. Copolymer and terpolymer gels using different mixtures of monomers i.e., N-[2-(dimethylaminoethyl)acrylamide] (DMAEAAm), N,N-dimethylacrylamide (DMAAm), acrylic acid (AA) and 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS), have been synthesized. The effect of copolymer composition, i.e., the ratio and amount of ionic monomers and the degree of crosslinking on the swelling characteristics, was evaluated as a function of pH. On this basis, metal ion sensitivity measurements were performed at selected pH values. The metal ion sensitivity was measured by varying the concentration of Cu2+, Zn2+ and Ag⁺ ions under acidic pH conditions.

6.
Macromol Rapid Commun ; 31(14): 1298-305, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21567528

RESUMO

Cyclopentadienyl (Cp) capped polymers [polyethylene glycols (PEGs), $\overline M _{\rm n}$ = 2 000 g · mol(-1) ], react readily with fullerenes in a 1:1 molar ratio (relative to the amount of fullerenes and Cp-end groups) at ambient temperature within 5 min in the absence of any catalyst in a Diels-Alder (DA) reaction to provide fullerene-PEG hybrids. Similarly, anthracenyl capped PEGs react with fullerenes (in a 1:3 molar ratio) in DA reactions to yield the corresponding hybrids, albeit over a period of 1.5 h at 80 °C and a lesser conversion. The efficiency of the transformation is monitored via electrospray ionization mass spectrometry (ESI-MS), demonstrating that the fullerenes can be transformed into polymer hybrids; most efficiently when Cp-functional polymer is used as the diene. In addition, the obtained hybrids were subjected to UV/Vis as well as thermogravimetric analysis further underpinning the formation of mono-substituted C(60) -PEG hybrids [wt.-%(exp) 70 ± 5 (PEG), 30 ± 5 (C(60) ), wt.-%(theo) 68 (PEG), 32 (C(60) )].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA