Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968107

RESUMO

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Assuntos
Hepatócitos , Fígado , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Esporozoítos/metabolismo , Esporozoítos/crescimento & desenvolvimento , Camundongos , Fígado/parasitologia , Fígado/metabolismo , Humanos , Hepatócitos/parasitologia , Hepatócitos/metabolismo , Malária Falciparum/parasitologia
2.
J Biol Chem ; 297(6): 101387, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758356

RESUMO

Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.


Assuntos
Aedes/metabolismo , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Superfície Celular/metabolismo , Tribolium/metabolismo , Aedes/genética , Animais , Proteínas de Insetos/genética , Hormônios Juvenis/metabolismo , Fosforilação , Receptores de Superfície Celular/genética , Células Sf9 , Spodoptera , Tribolium/genética
3.
Hum Reprod ; 36(5): 1353-1366, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33822049

RESUMO

STUDY QUESTION: How is endometrial epithelial receptivity, particularly adhesiveness, regulated at the luminal epithelial surface for embryo implantation in the human? SUMMARY ANSWER: Podocalyxin (PCX), a transmembrane protein, was identified as a key negative regulator of endometrial epithelial receptivity; specific downregulation of PCX in the luminal epithelium in the mid-secretory phase, likely mediated by progesterone, may act as a critical step in converting endometrial surface from a non-receptive to an implantation-permitting state. WHAT IS KNOWN ALREADY: The human endometrium must undergo major molecular and cellular changes to transform from a non-receptive to a receptive state to accommodate embryo implantation. However, the fundamental mechanisms governing receptivity, particularly at the luminal surface where the embryo first interacts with, are not well understood. A widely held view is that upregulation of adhesion-promoting molecules is important, but the details are not well characterized. STUDY DESIGN, SIZE, DURATION: This study first aimed to identify novel adhesion-related membrane proteins with potential roles in receptivity in primary human endometrial epithelial cells (HEECs). Further experiments were then conducted to determine candidates' in vivo expression pattern in the human endometrium across the menstrual cycle, regulation by progesterone using cell culture, and functional importance in receptivity using in vitro human embryo attachment and invasion models. PARTICIPANTS/MATERIALS, SETTING, METHODS: Primary HEECs (n = 9) were isolated from the proliferative phase endometrial tissue, combined into three pools, subjected to plasma membrane protein enrichment by ultracentrifugation followed by proteomics analysis, which led to the discovery of PCX as a novel candidate of interest. Immunohistochemical analysis determined the in vivo expression pattern and cellular localization of PCX in the human endometrium across the menstrual cycle (n = 23). To investigate whether PCX is regulated by progesterone, the master driver of endometrial differentiation, primary HEECs were treated in culture with estradiol and progesterone and analyzed by RT-PCR (n = 5) and western blot (n = 4). To demonstrate that PCX acts as a negative regulator of receptivity, PCX was overexpressed in Ishikawa cells (a receptive line) and the impact on receptivity was determined using in vitro attachment (n = 3-5) and invasion models (n = 4-6), in which an Ishikawa monolayer mimicked the endometrial surface and primary human trophoblast spheroids mimicked embryos. Mann-Whitney U-test and ANOVA analyses established statistical significance at *P ≤ 0.05 and **P ≤ 0.01. MAIN RESULTS AND THE ROLE OF CHANCE: PCX was expressed on the apical surface of all epithelial and endothelial cells in the non-receptive endometrium, but selectively downregulated in the luminal epithelium from the mid-secretory phase coinciding with the establishment of receptivity. Progesterone was confirmed to be able to suppress PCX in primary HEECs, suggesting this hormone likely mediates the downregulation of luminal PCX in vivo for receptivity. Overexpression of PCX in Ishikawa monolayer inhibited not only the attachment but also the penetration of human embryo surrogates, demonstrating that PCX acts as an important negative regulator of epithelial receptivity for implantation. LIMITATIONS, REASONS FOR CAUTION: Primary HEECs isolated from the human endometrial tissue contained a mixture of luminal and glandular epithelial cells, as further purification into subtypes was not possible due to the lack of specific markers. Future study would need to investigate how progesterone differentially regulates PCX in endometrial epithelial subtypes. In addition, this study used primary human trophoblast spheroids as human embryo mimics and Ishikawa as endometrial epithelial cells in functional models, future studies with human blastocysts and primary epithelial cells would further validate the findings. WIDER IMPLICATIONS OF THE FINDINGS: The findings of this study add important new knowledge to the understanding of human endometrial remodeling for receptivity. The identification of PCX as a negative regulator of epithelial receptivity and the knowledge that its specific downregulation in the luminal epithelium coincides with receptivity development may provide new avenues to assess endometrial receptivity and individualize endometrial preparation protocols in assisted reproductive technology (ART). The study also discovered PCX as progesterone target in HEECs, identifying a potentially useful functional biomarker to monitor progesterone action, such as in the optimization of progesterone type/dose/route of administration for luteal support. STUDY FUNDING/COMPETING INTEREST(S): Study funding was obtained from ESHRE, Monash IVF and NHMRC. LR reports potential conflict of interests (received grants from Ferring Australia; personal fees from Monash IVF Group and Ferring Australia; and non-financial support from Merck Serono, MSD, and Guerbet outside the submitted work. LR is also a minority shareholder and the Group Medical Director for Monash IVF Group, a provider of fertility preservation services). The remaining authors have no potential conflict of interest to declare. TRIAL REGISTRATION NUMBER: NA.


Assuntos
Implantação do Embrião , Células Endoteliais , Austrália , Endométrio , Células Epiteliais , Feminino , Humanos , Sialoglicoproteínas
4.
Nat Commun ; 12(1): 1172, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608523

RESUMO

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Assuntos
Transporte Biológico/fisiologia , Eritrócitos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana/metabolismo , Fosforilação , Plasmodium falciparum/crescimento & desenvolvimento , Proteômica
5.
Bioconjug Chem ; 30(10): 2539-2543, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31560523

RESUMO

The functionalization of proteins with different cargo molecules is highly desirable for a broad range of applications. However, the reproducible production of defined conjugates with multiple functionalities is a significant challenge. Herein, we report the dual site-specific labeling of an antibody fragment, utilizing the orthogonal Sortase A and π-clamp conjugation methods, and demonstrate that binding of the antibody fragment to its target receptor is retained after dual labeling.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/metabolismo , Sítios de Ligação , Corantes Fluorescentes/química , Células HEK293 , Humanos , Ligantes , Coloração e Rotulagem
6.
FASEB J ; 33(1): 584-605, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036086

RESUMO

Repair after damage is essential for tissue homeostasis. Postmenstrual endometrial repair is a cyclical manifestation of rapid, scar-free, tissue repair taking ∼3-5 d. Skin repair after wounding is slower (∼2 wk). In the case of chronic wounds, it takes months to years to restore integrity. Herein, the unique "rapid-repair" endometrial environment is translated to the "slower repair" skin environment. Menstrual fluid (MF), the milieu of postmenstrual endometrial repair, facilitates healing of endometrial and keratinocyte "wounds" in vitro, promoting cellular adhesion and migration, stimulates keratinocyte migration in an ex vivo human skin reconstruct model, and promotes re-epithelialization in an in vivo porcine wound model. Proteomic analysis of MF identified a large number of proteins: migration inhibitory factor, neutrophil gelatinase-associated lipocalin, follistatin like-1, chemokine ligand-20, and secretory leukocyte protease inhibitor were selected for further investigation. Functionally, they promote repair of endometrial and keratinocyte wounds by promoting migration. Translation of these and other MF factors into a migration-inducing treatment paradigm could provide novel treatments for tissue repair.-Evans, J., Infusini, G., McGovern, J., Cuttle, L., Webb, A., Nebl, T., Milla, L., Kimble, R., Kempf, M., Andrews, C. J., Leavesley, D., Salamonsen, L. A. Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.


Assuntos
Endométrio/citologia , Queratinócitos/citologia , Menstruação/metabolismo , Proteoma/metabolismo , Pele/citologia , Cicatrização , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Endométrio/metabolismo , Feminino , Humanos , Queratinócitos/metabolismo , Proteômica , Pele/metabolismo , Suínos
7.
Acta Biomater ; 80: 169-175, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30218779

RESUMO

Bacterial collagen-like proteins differ from vertebrate collagens in that they do not contain hydroxyproline, which is seen as a characteristic of the vertebrate collagens, and which provides a significant contribution to the stability of the collagen triple-helix at body temperature. Despite this difference, the bacterial collagens are stable at around body temperature through inclusion of other stabilising sequence elements. Another difference is the lack of aggregation, and certain vertebrate collagen binding domains that can be introduced into the bacterial sequence lack full function when hydroxyproline is absent. In the present study we have demonstrated that a simple method utilising co-translational incorporation during fermentation can be used to incorporate hydroxyproline into the recombinant bacterial collagen. The presence and amount of hydroxyproline incorporation was shown by amino acid analysis and by mass spectrometry. A small increase in thermal stability was observed using circular dichroism spectroscopy. STATEMENT OF SIGNIFICANCE: Recombinant bacterial collagens provide a new opportunity for biomedical materials as they are readily produced in large quantity in E. coli. Unlike animal collagens, they are stable without the need for inclusion of a secondary modification system for hydroxyproline incorporation. In animal collagens, however, introduction of hydroxyproline is essential for stability and is also important for functional molecular interactions within the mammalian extracellular matrix. The present study has shown that hydroxyproline can be readily introduced into recombinant S. pyogenes bacterial collagen through direct co-translational incorporation of this modified imino acid during expression using the codons for proline in the introduced gene construct. This hydroxylation further improves the stability of the collagen and is available to enhance any introduced molecular functions.


Assuntos
Colágeno/química , Hidroxiprolina/química , Streptococcus pyogenes/metabolismo , Sequência de Aminoácidos , Aminoácidos/análise , Proteínas de Bactérias/química , Espectrometria de Massas , Temperatura
8.
Nat Microbiol ; 3(9): 1010-1022, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127496

RESUMO

Plasmodium falciparum exports hundreds of virulence proteins within infected erythrocytes, a process that requires cleavage of a pentameric motif called Plasmodium export element or vacuolar transport signal by the endoplasmic reticulum (ER)-resident protease plasmepsin V. We identified plasmepsin V-binding proteins that form a unique interactome required for the translocation of effector cargo into the parasite ER. These interactions are functionally distinct from the Sec61-signal peptidase complex required for the translocation of proteins destined for the classical secretory pathway. This interactome does not involve the signal peptidase (SPC21) and consists of PfSec61, PfSPC25, plasmepsin V and PfSec62, which is an essential component of the post-translational ER translocon. Together, they form a distinct portal for the recognition and translocation of a large subset of Plasmodium export element effector proteins into the ER, thereby remodelling the infected erythrocyte that is required for parasite survival and pathogenesis.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Canais de Translocação SEC/metabolismo , Ácido Aspártico Endopeptidases/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Membrana Celular/fisiologia , Malária Falciparum/patologia , Plasmodium falciparum/patogenicidade , Canais de Translocação SEC/genética , Fatores de Virulência
9.
FEBS J ; 285(11): 2037-2055, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29637707

RESUMO

The pathogenic nature of malaria infections is due in part to the export of hundreds of effector proteins that actively remodel the host erythrocyte. The Plasmodium translocon of exported proteins (PTEX) has been shown to facilitate the trafficking of proteins into the host cell, a process that is essential for the survival of the parasite. The role of the auxiliary PTEX component PTEX88 remains unclear, as previous attempts to elucidate its function through reverse genetic approaches showed that in contrast to the core components PTEX150 and HSP101, knockdown of PTEX88 did not give rise to an export phenotype. Here, we have used biochemical approaches to understand how PTEX88 assembles within the translocation machinery. Proteomic analysis of the PTEX88 interactome showed that PTEX88 interacts closely with HSP101 but has a weaker affinity with the other core constituents of PTEX. PTEX88 was also found to associate with other PV-resident proteins, including chaperones and members of the exported protein-interacting complex that interacts with the major virulence factor PfEMP1, the latter contributing to cytoadherence and parasite virulence. Despite being expressed for the duration of the blood-stage life cycle, PTEX88 was only discretely observed at the parasitophorous vacuole membrane during ring stages and could not always be detected in the major high molecular weight complex that contains the other core components of PTEX, suggesting that its interaction with the PTEX complex may be dynamic. Together, these data have enabled the generation of an updated model of PTEX that now includes how PTEX88 assembles within the complex.


Assuntos
Interações Hospedeiro-Parasita/genética , Malária Falciparum/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Eritrócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/genética , Malária Falciparum/parasitologia , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Plasmodium falciparum/patogenicidade , Transporte Proteico/genética , Proteômica
10.
Food Chem ; 254: 292-301, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29548456

RESUMO

Animal and aquatic meats represent important sources of dietary protein and micro-nutrients. Although red and processed meats carry some risks for human health, sensory and nutritional advantages drive meat consumption. Therefore, it is important to understand how meat processing and cooking influence healthiness. The research aim was to investigate relationships of meat composition (proximates, amino acids and minerals) and cooking conditions (raw, 90 s microwave, 200 °C oven for 10 or 30 min) on protein digestibility, for a selection of four animal (beef, chicken, pork, kangaroo) and four aquatic meats (salmon, trout, prawn, oyster). Lean meats were minced before cooking followed by in vitro gastro-intestinal digestion and analysed for progress of hydrolysis, and size ranges of peptides using MALDI-TOF-MS. Correlation matrix analysis between compositional and functional parameters indicated that digestibility was significantly linked with protein and metal concentrations, likely reflecting moisture-dependent solubility and inter-mixing of sarcoplasmic metallo-proteins and insoluble myofibrillar proteins.


Assuntos
Culinária , Proteínas Alimentares/farmacocinética , Carne , Micronutrientes/análise , Alimentos Marinhos , Aminoácidos , Animais , Bovinos , Galinhas , Proteínas Alimentares/análise , Digestão , Humanos , Macropodidae , Carne/análise , Carne Vermelha/análise , Salmão/metabolismo , Alimentos Marinhos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Oligoelementos/análise
11.
J Biol Chem ; 293(20): 7880-7891, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29523689

RESUMO

Cyanuric acid is a metabolic intermediate of s-triazines, such as atrazine (a common herbicide) and melamine (used in resins and plastics). Cyanuric acid is mineralized to ammonia and carbon dioxide by the soil bacterium Pseudomonas sp. strain ADP via three hydrolytic enzymes (AtzD, AtzE, and AtzF). Here, we report the purification and biochemical and structural characterization of AtzE. Contrary to previous reports, we found that AtzE is not a biuret amidohydrolase, but instead it catalyzes the hydrolytic deamination of 1-carboxybiuret. X-ray crystal structures of apo AtzE and AtzE bound with the suicide inhibitor phenyl phosphorodiamidate revealed that the AtzE enzyme complex consists of two independent molecules in the asymmetric unit. We also show that AtzE forms an α2ß2 heterotetramer with a previously unidentified 68-amino acid-long protein (AtzG) encoded in the cyanuric acid mineralization operon from Pseudomonas sp. strain ADP. Moreover, we observed that AtzG is essential for the production of soluble, active AtzE and that this obligate interaction is a vestige of their shared evolutionary origin. We propose that AtzEG was likely recruited into the cyanuric acid-mineralizing pathway from an ancestral glutamine transamidosome that required protein-protein interactions to enforce the exclusion of solvent from the transamidation reaction.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Herbicidas/química , Pseudomonas/enzimologia , Triazinas/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Herbicidas/metabolismo , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Óperon , Organofosfatos/química , Organofosfatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudomonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Triazinas/metabolismo
13.
J Immunol ; 200(5): 1802-1816, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367211

RESUMO

Neutrophil extracellular traps (NETs) and the cell death associated with it (NETosis) have been implicated in numerous diseases. Mechanistic studies of NETosis have typically relied on nonphysiological stimuli, such as PMA. The human disease of gout is caused by monosodium urate (MSU) crystals. We observed that DNA consistent with NETs is present in fluid from acutely inflamed joints of gout patients. NETs also coat the crystals found in uninflamed tophi of chronic gout patients. We developed a quantitative, live cell imaging assay, which measures the key features of NETosis, namely, cell death and chromatin decondensation. We show that MSU and other physiologically relevant crystals induce NETosis through a molecular pathway that is distinct from PMA and Candida hyphae. Crystals interact with lysosomes to induce NADPH oxidase-independent cell death, with postmortem chromatin decondensation mediated by neutrophil elastase. The resulting MSU-induced NETs are enriched for actin and are resistant to serum and DNase degradation. These findings demonstrate a distinct physiological NETosis pathway in response to MSU crystals, which coats MSU crystals in DNA that persists in tissues as gouty tophi.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Ácido Úrico/metabolismo , Gota/metabolismo , Humanos , Elastase de Leucócito/metabolismo , Masculino , Líquido Sinovial/metabolismo
14.
PLoS One ; 12(7): e0181656, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732045

RESUMO

Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Malária Falciparum/parasitologia , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo , Virulência/fisiologia , Animais , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Malária Falciparum/sangue , Malária Falciparum/metabolismo , Parasitos/metabolismo , Parasitos/patogenicidade
15.
Food Chem ; 233: 514-524, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28530606

RESUMO

Breads prepared from cereal grains are a dietary staple, providing a significant proportion of daily energy, but not necessarily of dietary protein. However, good digestibility of proteins in bread is important to avoid potential immunogenic effects of undigested peptides, including for those gluten-intolerant. Four gluten-containing (white wheat, wholemeal wheat, spelt and rye) and four gluten-free (chick pea, lupin, buckwheat, amaranth) flours were used to make yeast-leavened breads standardized for protein. In vitro gastro-intestinal digestion of pre-mixes, doughs and breads baked for 20 and 35min was conducted followed by correlation analysis between fitted parameters of digestion profiles, chemical composition (protein, non-fibre carbohydrates, fibre, ash and total polyphenolics) and amino acid profiles. The results indicated that digestibility generally increased during proofing and decreased during baking. Relatively higher protein digestibility was correlated with ratio of non-fibre carbohydrate to protein and lower digestibility with increasing contents of fibre and total polyphenolics in pre-mixes.


Assuntos
Pão/análise , Culinária , Farinha/análise , Glutens/análise , Carboidratos/análise , Polifenóis/química
16.
Elife ; 62017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28226242

RESUMO

The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion.


Assuntos
Antígenos de Protozoários/metabolismo , Adesão Celular , Endocitose , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Interações Hospedeiro-Patógeno , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Membrana Celular/fisiologia , Elasticidade , Eritrócitos/citologia , Eritrócitos/fisiologia , Humanos , Transdução de Sinais , Viscosidade
17.
Cell Host Microbe ; 20(1): 60-71, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27374406

RESUMO

Plasmodium falciparum parasites in the merozoite stage invade human erythrocytes and cause malaria. Invasion requires multiple interactions between merozoite ligands and erythrocyte receptors. P. falciparum reticulocyte binding homolog 5 (PfRh5) forms a complex with the PfRh5-interacting protein (PfRipr) and Cysteine-rich protective antigen (CyRPA) and binds erythrocytes via the host receptor basigin. However, the specific role that PfRipr and CyRPA play during invasion is unclear. Using P. falciparum lines conditionally expressing PfRipr and CyRPA, we show that loss of PfRipr or CyRPA function blocks growth due to the inability of merozoites to invade erythrocytes. Super-resolution microscopy revealed that PfRipr, CyRPA, and PfRh5 colocalize at the junction between merozoites and erythrocytes during invasion. PfRipr, CyRPA, and PfRipr/CyRPA/PfRh5-basigin complex is required for triggering the Ca(2+) release and establishing the tight junction. Together, these results establish that the PfRh5/PfRipr/CyRPA complex is essential in the sequential molecular events leading to parasite invasion of human erythrocytes.


Assuntos
Antígenos de Protozoários/metabolismo , Proteínas de Transporte/metabolismo , Endocitose , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Basigina/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Microscopia , Modelos Biológicos , Ligação Proteica , Multimerização Proteica
18.
Virology ; 494: 143-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27110707

RESUMO

Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Masculino , Camundongos , Mutação , Testes de Neutralização , Infecções por Orthomyxoviridae/patologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Virulência/genética
19.
Cell Microbiol ; 18(11): 1551-1569, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27019089

RESUMO

The Plasmodium translocon for exported proteins (PTEX) has been established as the machinery responsible for the translocation of all classes of exported proteins beyond the parasitophorous vacuolar membrane of the intraerythrocytic malaria parasite. Protein export, particularly in the asexual blood stage, is crucial for parasite survival as exported proteins are involved in remodelling the host cell, an essential process for nutrient uptake, waste removal and immune evasion. Here, we have truncated the conserved C-terminus of one of the essential PTEX components, PTEX150, in Plasmodium falciparum in an attempt to create mutants of reduced functionality. Parasites tolerated C-terminal truncations of up to 125 amino acids with no reduction in growth, protein export or the establishment of new permeability pathways. Quantitative proteomic approaches however revealed a decrease in other PTEX subunits associating with PTEX150 in truncation mutants, suggesting a role for the C-terminus of PTEX150 in regulating PTEX stability. Our analyses also reveal three previously unreported PTEX-associated proteins, namely PV1, Pf113 and Hsp70-x (respective PlasmoDB numbers; PF3D7_1129100, PF3D7_1420700 and PF3D7_0831700) and demonstrate that core PTEX proteins exist in various distinct multimeric forms outside the major complex.


Assuntos
Eritrócitos/parasitologia , Proteínas de Membrana Transportadoras/fisiologia , Plasmodium falciparum/fisiologia , Proteoma/metabolismo , Proteínas de Protozoários/fisiologia , Células Cultivadas , Humanos , Complexos Multiproteicos/metabolismo , Domínios Proteicos , Mapas de Interação de Proteínas , Estabilidade Proteica , Transporte Proteico
20.
Nat Commun ; 7: 10470, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26832821

RESUMO

Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Membrana Celular , Escherichia coli , Lopinavir/farmacologia , Plasmodium falciparum/genética , Ligação Proteica , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...