Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744995

RESUMO

Polyamine (PA) catabolism is often reduced in cancer cells. The activation of this metabolic pathway produces cytotoxic substances that might cause apoptosis in cancer cells. Chemical compounds able to restore the level of PA catabolism in tumors could become potential antineoplastic agents. The search for activators of PA catabolism among bicyclononan-9-ones is a promising strategy for drug development. The aim of the study was to evaluate the biological activity of new 3,7-diazabicyclo[3.3.1]nonan-9-one derivatives that have antiproliferative properties by accelerating PA catabolism. Eight bispidine derivatives were synthetized and demonstrated the ability to activate PA catabolism in regenerating rat liver homogenates. However, only three of them demonstrated a potent ability to decrease the viability of cancer cells in the MTT assay. Compounds 4c and 4e could induce apoptosis more effectively in cancer HepG2 cells rather than in normal WI-38 fibroblasts. The lead compound 4e could significantly enhance cancer cell death, but not the death of normal cells if PAs were added to the cell culture media. Thus, the bispidine derivative 4e 3-(3-methoxypropyl)-7-[3-(1H-piperazin-1-yl)ethyl]-3,7-diazabicyclo[3.3.1]nonane could become a potential anticancer drug substance whose mechanism relies on the induction of PA catabolism in cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/química , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias/tratamento farmacológico , Poliaminas/química , Ratos , Relação Estrutura-Atividade
2.
Biomed Rep ; 16(5): 38, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35386108

RESUMO

The aim of the present study was to investigate the influence of millimeter-wave electromagnetic (MW) irradiation on normal and pathological human sperm in vitro, and to evaluate a possible role of polyamines (PA) in this process. The stability of sperm membranes, the number of apoptotic gametes, and the content of seminal plasma PA in the ejaculates of fertile and subfertile men were compared before and after short-term MW electromagnetic exposure in vitro. The ejaculate samples were collected from healthy donors [n=25, age 22-38 years old (y.o.), average age 30.6±1.1 y.o. (mean ± SEM)] and from subfertile men (n=78, age 25-48 y.o., average age 34.1±0.8 y.o.) and exposed to MW radiation. The electromagnetic field had a wavelength of 7.1 mm, a frequency of 42.194 GHz and an exposure time of 20 min. The fragility of sperm membranes was evaluated by their resistance to sodium chloride solution (Milovanov test) and to acetic acid (Joel test). Acrosin activity was assayed spectrophotometrically. Apoptosis was determined by the externalization of phosphatidylserine on the outer side of the sperm membrane and propidium iodide staining. The PA levels were determined by agar gel electrophoretic fractionation. An increase in the resistance of sperm membranes, a decrease in acrosin activity, a decrease in the number of apoptotic gametes and a decrease in the seminal plasma PA concentrations were found after exposure of the native human sperm to low-intensity MW irradiation. Two types of reactions were revealed for the subfertile samples. The results revealed positive bio-effects of specific microwaves on the human semen and the participation of PA in the realization of these effects.

3.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163785

RESUMO

Physiological polyamines are ubiquitous polycations with pleiotropic biochemical activities, including regulation of gene expression and cell proliferation as well as modulation of cell signaling. They can also decrease DNA damage and promote cell survival. In the present study, we demonstrated that polyamines have cytoprotective effects on normal human CD4+ T lymphocytes but not on cancer Jurkat or K562 cells. Pretreatment of lymphocytes with polyamines resulted in a significant reduction in cells with DNA damage induced by doxorubicin, cisplatin, or irinotecan, leading to an increase in cell survival and viability. The induction of RAD51A expression was in response to DNA damage in both cancer and normal cells. However, in normal cells, putrescin pretreatment resulted in alternative splicing of RAD51A and the switch of the predominant expression from the splice variant with the deletion of exon 4 to the full-length variant. Induction of RAD51A alternative splicing by splice-switching oligonucleotides resulted in a decrease in DNA damage and cell protection against cisplatin-induced apoptosis. The results of this study suggest that the cytoprotective activity of polyamines is associated with the alternative splicing of RAD51A pre-mRNA in normal human CD4+ T lymphocytes. The difference in the sensitivity of normal and cancer cells to polyamines may become the basis for the use of these compounds to protect normal lymphocytes during lymphoblastic chemotherapy.


Assuntos
Processamento Alternativo , Linfócitos T CD4-Positivos/citologia , Poliaminas/metabolismo , Rad51 Recombinase/genética , Processamento Alternativo/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Sobrevivência Celular , Cisplatino/efeitos adversos , Dano ao DNA , Doxorrubicina/efeitos adversos , Humanos , Irinotecano/efeitos adversos , Células Jurkat , Células K562 , Poliaminas/farmacologia , Precursores de RNA/genética
4.
Int J Mol Med ; 47(1): 23-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33155658

RESUMO

The leading cause of death in developed countries is cardiovascular disease, where coronary heart disease is the main cause of death. Myocardial reperfusion is the most significant method to prevent cell death after ischemia. However, restoration of blood flow may paradoxically lead to myocardial ischemia­reperfusion injury (MI/RI) accompanied by metabolic disturbances and cardiomyocyte death. As the myocardium has an extremely limited ability to regenerate, the mechanisms of regulated cell death, including apoptosis, are the most significant for contemporary research due to their reversibility. BCL2 is a key anti­apoptotic protein. There are several signaling pathways and compounds regulating BCL2, including PI3K/AKT and MEK1/ERK1/2, JAK2/STAT3, endothelial nitric oxide synthase, PTEN, cardiac ankyrin repeat protein and microRNA, which can serve as targets for modern methods of cardioprotective therapy inhibiting intrinsic apoptosis and saving viable cardiomyocytes after MI/RI. The present review considers the mechanisms of Bcl2­regulated apoptosis in the development and treatment of MI/RI.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos
5.
Anticancer Res ; 40(3): 1437-1441, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32132040

RESUMO

BACKGROUND/AIM: Polyamines are important for the growth of eukaryotic cells. At high levels, they promote proliferation, invasion and migration of tumour cells. Polyamine metabolism is an important new target for anticancer therapy. Some polyamine analogues can have an inhibitory effect on tumour cells. The aim of this study was to explore the potential of certain butylated derivatives of propanediamine for prostate cancer chemotherapy. MATERIALS AND METHODS: Human prostate cancer cells, LNCaP, were used for the evaluation of the antiproliferative activity of polyamine analogs and their influence on spermine oxidase. RESULTS: Tetrabutyl propanediamine and two new polyamine analogues inhibited the growth of LNCaP cells. At the same time, a strong activation of spermine oxidase was observed. CONCLUSION: The investigated compounds demonstrated their potential value in the therapy of human prostate cancer. Their effect might be attributed to the activation of the polyamine catabolic pathway.


Assuntos
Diaminas/farmacologia , Poliaminas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Poliaminas Biogênicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Redes e Vias Metabólicas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Poliamina Oxidase
6.
Amino Acids ; 52(2): 199-211, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31520286

RESUMO

The polyamine (PA) metabolism is involved in cell proliferation and differentiation. Increased cellular PA levels are observed in different types of cancers. Products of PA oxidation induce apoptosis in cancer cells. These observations open a perspective to exploit the enzymes of PA catabolism as a target for anticancer drug design. The substances capable to enhance PA oxidation may become potential anticancer agents. The goal of our study was to explore how the mode of ligand binding with a PA catabolic enzyme is associated with its stimulatory or inhibitory effect upon PA oxidation. Murine N1-acetylpolyamine oxidase (5LFO) crystalline structure was used for molecular docking with ligands of various chemical structures. In vitro experiments were carried out to evaluate the action of the tested compounds upon PA oxidative deamination in a cell-free test system from rat liver. Two amino acid residues (Aps211 and Tyr204) in the structure of 5LFO were found to be significant for binding with the tested compounds. 19 out of 51 screened compounds were activators and 17 were inhibitors of oxidative deamination of PA. Taken together, these results enabled to construct a recognition model with characteristic descriptors depicting activators and inhibitors. The general tendency indicated that a strong interaction with Asp211 or Tyr204 was rather typical for activators. The understanding of how the structure determines the binding mode of compounds with PA catabolic enzyme may help in explanation of their structure-activity relationship and thus promote structure-based drug design.


Assuntos
Poliaminas/química , Poliaminas/metabolismo , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Animais , Apoptose , Fluorenos/química , Fluorenos/metabolismo , Ligantes , Fígado/enzimologia , Simulação de Acoplamento Molecular , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Piridinas/química , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...