Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 34(1): 4-11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174996

RESUMO

RNA-based medicines have potential to treat a large variety of diseases, and research in the field is very dynamic. Proactively, The European Medicines Agency (EMA) organized a virtual conference on February 2, 2023 to promote the development of RNA-based medicines. The initiative addresses the goal of the EMA Regulatory Science Strategy to 2025 to "catalyse the integration of science and technology in medicines development." The conference focused on RNA technologies (excluding RNA vaccines) and involved different stakeholders, including representatives from academia, industry, regulatory authorities, and patient organizations. The conference comprised presentations and discussion sessions conducted by panels of subject matter experts. In this meeting report, we summarize the presentations and recap the main themes of the panel discussions.


Assuntos
RNA , Humanos , Indústria Farmacêutica , Congressos como Assunto , RNA/uso terapêutico
2.
ACS Chem Biol ; 18(10): 2183-2187, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37061926

RESUMO

New technologies are required to combat the challenges faced with manufacturing commercial quantities of oligonucleotide drug substances which are required for treating large patient populations. Herein we report a convergent biocatalytic synthesis strategy for an Alnylam model siRNA. The siRNA chemical structure includes several of the unnatural modifications and conjugations typical of siRNA drug substances. Using Almac's 3-2-3-2 hybrid RNA ligase enzyme strategy that sequentially ligates short oligonucleotide fragments (blockmers), the target siRNA was produced to high purity at 1 mM concentration. Additional strategies were investigated including the use of polynucleotide kinase phosphorylation and the use of crude blockmer starting materials without chromatographic purification. These findings highlight a path toward a convergent synthesis of siRNAs for large-scale manufacture marrying both enzymatic liquid and classical solid-phase synthesis.


Assuntos
Oligonucleotídeos , Humanos , RNA Interferente Pequeno/genética , Biocatálise , Oligonucleotídeos/química , Fosforilação
3.
Mol Pharm ; 13(10): 3404-3416, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27552547

RESUMO

The main goal of this study was to evaluate tumor necrosis factor-alpha (TNF-α) gene silencing in peritoneal macrophages upon activation with lipopolysaccharide (LPS), using CD44-targeting hyaluronic acid (HA)-based nanoparticles encapsulating TNF-α-specific small interfering RNA (siTNF-α). HA nanoparticles were formulated by blending hyaluronic acid-poly(ethylene imine) (HA-PEI), hyaluronic acid-hexyl fatty acid (HA-C6), and hyaluronic acid-poly(ethylene glycol) (HA-PEG) in 3:2:1 weight ratio, and encapsulating siTNF-α to form spherical particles of 78-90 nm diameter. Following intraperitoneal (IP) administration in LPS-treated C57BL/6 mice, the nanoparticles were actively taken up by macrophages and led to a significant downregulation of peritoneal TNF-α level. Downregulation of peritoneal macrophage-specific TNF-α also had a significant impact on other pro-inflammatory cytokine and chemokine levels in the serum. The C57BL/6 group of mice challenged with 5 mg/kg LPS had a significantly higher survival rate when they were treated with 3 mg/kg siTNF-α, either prior or simultaneously with the LPS administration, as compared to the LPS-challenged mice, which were treated with controls including the scrambled siRNA formulation. Overall, the results of this study demonstrate that CD44 targeting HA nanoparticles can selectively deliver siTNF-α to peritoneal macrophages leading to downregulation of pro-inflammatory cytokines in the peritoneal fluid and in the serum. This RNAi strategy could potentially provide an important therapeutic modality for acute inflammatory diseases, such as septic shock.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Nanopartículas/química , Fator de Necrose Tumoral alfa/genética , Animais , Receptores de Hialuronatos/genética , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Nanopartículas/metabolismo , RNA Interferente Pequeno/genética
4.
J Hepatol ; 64(4): 899-907, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26658687

RESUMO

BACKGROUND & AIMS: The Hippo pathway controls organ size through a negative regulation of the transcription co-activator Yap1. The overexpression of hyperactive mutant Yap1 or deletion of key components in the Hippo pathway leads to increased organ size in different species. Analysis of interactions of this pathway with other cellular signals corroborating organ size control is limited in part due to the difficulties associated with development of rodent models. METHODS: Here, we develop a new model of reversible induction of the liver size in mice using siRNA-nanoparticles targeting two kinases of the Hippo pathway, namely, mammalian Ste20 family kinases 1 and 2 (Mst1 and Mst2), and an upstream regulator, neurofibromatosis type II (Nf2). RESULTS: The triple siRNAs nanoparticle-induced hepatomegaly in mice phenocopies one observed with Mst1(-/-)Mst2(-/-) liver-specific depletion, as shown by extensive proliferation of hepatocytes and activation of Yap1. The simultaneous co-treatment with a fourth siRNA nanoparticle against Yap1 fully blocked the liver growth. Hippo pathway-induced liver enlargement is associated with p53 activation, evidenced by its accumulation in the nuclei and upregulation of its target genes. Moreover, injections of the triple siRNAs nanoparticle in p53(LSL/LSL) mice shows that livers lacking p53 expression grow faster and exceed the size of livers in p53 wild-type animals, indicating a role of p53 in controlling Yap1-induced liver growth. CONCLUSION: Our data show that siRNA-nanoparticulate manipulation of gene expression can provide the reversible control of organ size in adult animals, which presents a new avenue for the investigation of complex regulatory networks in liver.


Assuntos
Genômica/métodos , Fígado/crescimento & desenvolvimento , Nanopartículas , Interferência de RNA , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular , Expressão Gênica , Genes da Neurofibromatose 2 , Fator de Crescimento de Hepatócito/genética , Hepatomegalia/etiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina-Treonina Quinase 3 , Proteína Supressora de Tumor p53/fisiologia , Proteínas de Sinalização YAP
5.
Expert Opin Biol Ther ; 14(4): 419-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24397825

RESUMO

INTRODUCTION: Sepsis is an extremely fast-paced disease, initiated by an infection that can progress to multiple organ dysfunction and death. The complexity associated with sepsis makes the therapies difficult to develop. Moreover, the 'one-fits-all' kind of therapy is far from being realistic. AREAS COVERED: This review provides a conspectus of the current results of sepsis therapies and their benefits, focusing on the development of small interfering RNA (siRNA) therapeutics for targeting immune cells and sepsis pathways. EXPERT OPINION: The question, 'When will an effective therapy for sepsis be available for patients?' remains unanswered. New RNA interference-mediated therapies are emerging as novel approaches for the treatment of sepsis by downregulating key inflammatory cytokine expression. Strategies that exploit multimodal gene silencing using siRNA and targeted delivery systems are discussed in this review. Some of these strategies have shown positive results in preclinical model of sepsis.


Assuntos
Interferência de RNA , Sepse/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/fisiologia , Sistemas de Liberação de Medicamentos , Inativação Gênica , Humanos , Inflamação/genética , Inflamação/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Sepse/fisiopatologia
6.
Mol Ther ; 20(8): 1582-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22850721

RESUMO

Therapeutics based on RNA interference (RNAi) have emerged as a potential new class of drugs for treating human disease by silencing the target messenger RNA (mRNA), thereby reducing levels of the corresponding pathogenic protein. The major challenge for RNAi therapeutics is the development of safe delivery vehicles for small interfering RNAs (siRNAs). We previously showed that cholesterol-conjugated siRNAs (chol-siRNA) associate with plasma lipoprotein particles and distribute primarily to the liver after systemic administration to mice. We further demonstrated enhancement of silencing by administration of chol-siRNA pre-associated with isolated high-density lipoprotein (HDL) or low-density lipoprotein (LDL). In this study, we investigated mimetic lipoprotein particle prepared from recombinant apolipoprotein A1 (apoA) and apolipoprotein E3 (apoE) as a delivery vehicle for chol-siRNAs. We show that apoE-containing particle (E-lip) is highly effective in functional delivery of chol-siRNA to mouse liver. E-lip delivery was found to be considerably more potent than apoA-containing particle (A-lip). Furthermore, E-lip-mediated delivery was not significantly affected by high endogenous levels of plasma LDL. These results demonstrate that E-lip has substantial potential as delivery vehicles for lipophilic conjugates of siRNAs.


Assuntos
Lipoproteínas/administração & dosagem , Lipoproteínas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Apolipoproteína A-I/administração & dosagem , Apolipoproteína A-I/química , Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/química , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/química , Lipoproteínas LDL/administração & dosagem , Lipoproteínas LDL/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética
7.
Exp Neurol ; 233(1): 463-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22119622

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disease caused by a toxic gain of function mutation in the huntingtin gene (Htt). Silencing of Htt with RNA interference using direct CNS delivery in rodent models of Huntington's disease has been shown to reduce pathology and promote neuronal recovery. A key translational step for this approach is extension to the larger non-human primate brain, achieving sufficient distribution of small interfering RNA targeting Htt (siHtt) and levels of Htt suppression that may have therapeutic benefit. We evaluated the potential for convection enhanced delivery (CED) of siHtt to provide widespread and robust suppression of Htt in nonhuman primates. siHtt was infused continuously for 7 or 28 days into the nonhuman primate putamen to analyze effects of infusion rate and drug concentration on the volume of effective suppression. Distribution of radiolabeled siHtt and Htt suppression were quantified by autoradiography and PCR, respectively, in tissue punches. Histopathology was evaluated and Htt suppression was also visualized in animals treated for 28 days. Seven days of CED led to widespread distribution of siHtt and significant Htt silencing throughout the nonhuman primate striatum in an infusion rate and dose dependent manner. Htt suppression at therapeutic dose levels was well tolerated by the brain. A model developed from these results predicts that continuous CED of siHtt can achieve significant coverage of the striatum of Huntington's disease patients. These findings suggest that this approach may provide an important therapeutic strategy for treating Huntington's disease.


Assuntos
Convecção , Corpo Estriado/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Análise de Variância , Animais , Isótopos de Carbono/metabolismo , Corpo Estriado/diagnóstico por imagem , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Técnicas de Transferência de Genes , Humanos , Proteína Huntingtina , Macaca mulatta , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Cintilografia , Fatores de Tempo
9.
J Control Release ; 144(2): 227-32, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20170694

RESUMO

Conjugation of small interfering RNA (siRNA) with lipophilic molecules has been demonstrated to enhance cellular uptake in cell culture and to produce efficient endogenous gene silencing in the liver after systemic administration and in neurons after direct local injection. Here, we evaluated the in vivo delivery of siRNAs conjugated with different linkers to cholesterol by targeting CNPase (2'-3'-cyclic nucleotide 3'-phosphodiesterase) in oligodendrocytes. Cholesterol-conjugated siRNAs administered to the rat corpus callosum by intraparenchymal central nervous system (CNS) infusion show improved silencing ability compared with unconjugated siRNA. Furthermore, conjugation of siRNA to cholesterol with a cleavable disulfide linker appears to be beneficial for improving the potency of silencing of CNPase mRNA in oligodendrocytes in vivo. Taken together, these findings indicate that cholesterol-conjugated siRNAs are effective for direct CNS delivery to oligodendrocytes, and that the biocleavable disulfide linker appears to be beneficial for improving the potency of silencing of target mRNA in vivo.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/genética , Animais , Sistema Nervoso Central , Colesterol/genética , Masculino , Neurônios , Oligodendroglia , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley
10.
Nat Biotechnol ; 28(2): 172-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20081866

RESUMO

We adopted a rational approach to design cationic lipids for use in formulations to deliver small interfering RNA (siRNA). Starting with the ionizable cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a key lipid component of stable nucleic acid lipid particles (SNALP) as a benchmark, we used the proposed in vivo mechanism of action of ionizable cationic lipids to guide the design of DLinDMA-based lipids with superior delivery capacity. The best-performing lipid recovered after screening (DLin-KC2-DMA) was formulated and characterized in SNALP and demonstrated to have in vivo activity at siRNA doses as low as 0.01 mg/kg in rodents and 0.1 mg/kg in nonhuman primates. To our knowledge, this represents a substantial improvement over previous reports of in vivo endogenous hepatic gene silencing.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Desenho de Fármacos , Lipídeos/química , RNA Interferente Pequeno/química , Transfecção/métodos , Cátions , RNA Interferente Pequeno/administração & dosagem
11.
Antimicrob Agents Chemother ; 53(9): 3952-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19506055

RESUMO

We describe the design and characterization of a potent human respiratory syncytial virus (RSV) nucleocapsid gene-specific small interfering RNA (siRNA), ALN-RSV01. In in vitro RSV plaque assays, ALN-RSV01 showed a 50% inhibitory concentration of 0.7 nM. Sequence analysis of primary isolates of RSV showed that the siRNA target site was absolutely conserved in 89/95 isolates, and ALN-RSV01 demonstrated activity against all isolates, including those with single-mismatch mutations. In vivo, intranasal dosing of ALN-RSV01 in a BALB/c mouse model resulted in potent antiviral efficacy, with 2.5- to 3.0-log-unit reductions in RSV lung concentrations being achieved when ALN-RSV01 was administered prophylactically or therapeutically in both single-dose and multidose regimens. The specificity of ALN-RSV01 was demonstrated in vivo by using mismatch controls; and the absence of an immune stimulatory mechanism was demonstrated by showing that nonspecific siRNAs that induce alpha interferon and tumor necrosis factor alpha lack antiviral efficacy, while a chemically modified form of ALN-RSV01 lacking measurable immunostimulatory capacity retained full activity in vivo. Furthermore, an RNA interference mechanism of action was demonstrated by the capture of the site-specific cleavage product of the RSV mRNA via rapid amplification of cDNA ends both in vitro and in vivo. These studies lay a solid foundation for the further investigation of ALN-RSV01 as a novel therapeutic antiviral agent for clinical use by humans.


Assuntos
Antivirais/farmacologia , Nucleocapsídeo/genética , Interferência de RNA/fisiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Animais , Chlorocebus aethiops , Cricetinae , Feminino , Genótipo , Humanos , Interferon-alfa/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Filogenia , RNA Interferente Pequeno/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sincicial Respiratório Humano/classificação , Fator de Necrose Tumoral alfa/metabolismo
12.
Oligonucleotides ; 19(1): 23-29, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19093781

RESUMO

The most significant challenge remaining in the development of small interfering RNAs (siRNAs) as a new class of therapeutic drugs is successful delivery in vivo. The majority of reported studies describing delivery of siRNA or short hairpin RNA (shRNA) to the central nervous system (CNS) have focused on RNA interference (RNAi) in neurons. Here we show direct CNS delivery of siRNA to a different cell type-oligodendrocytes-using convection-enhanced delivery, and demonstrate robust silencing of an endogenous oligodendrocyte-specific gene, 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) with siRNA formulated in saline. The silencing is not sequence-dependent as several different siRNAs are effective in inhibiting target gene expression. Furthermore, we show that CNPase mRNA reduction is dose-dependent, durable for up to 1 week, and mediated by an RNAi mechanism. Increasing the flow rate of siRNA infusion increased the distribution of mRNA suppression to encompass white matter regions distant from the infusion site. Finally, we demonstrate suppression of CNPase mRNA in the nonhuman primate CNS. Taken together, these results show for the first time robust RNAi within oligodendrocytes in vivo and demonstrate the important potential of siRNAs in the treatment of CNS disorders involving oligodendrocyte pathology.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , Animais , Sequência de Bases , Sistema Nervoso Central/metabolismo , Imuno-Histoquímica , Masculino , Oligodendroglia/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 105(33): 11915-20, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18695239

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50-70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5'-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.


Assuntos
LDL-Colesterol/sangue , Primatas/metabolismo , RNA Interferente Pequeno/genética , Serina Endopeptidases/metabolismo , Animais , Humanos , Fígado/enzimologia , Camundongos , Camundongos Knockout , Estrutura Molecular , Primatas/genética , RNA Mensageiro/genética , Ratos , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Fatores de Tempo
14.
Nat Biotechnol ; 26(5): 561-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18438401

RESUMO

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2'-O-methyl (2'-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Assuntos
Técnicas de Química Combinatória/métodos , Portadores de Fármacos/química , Desenho de Fármacos , Lipídeos/química , Interferência de RNA , RNA/administração & dosagem , RNA/genética
15.
Antiviral Res ; 77(3): 225-31, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18242722

RESUMO

Small interfering RNAs (siRNAs) work through RNA interference (RNAi), the natural RNA inhibitory pathway, to down-regulate protein production by inhibiting targeted mRNA in a sequence-specific manner. ALN-RSV01 is an siRNA directed against the mRNA encoding the N-protein of respiratory syncytial virus (RSV) that exhibits specific in vitro and in vivo anti-RSV activity. The results of two safety and tolerability studies with ALN-RSV01 involving 101 healthy adults (65 active, 36 placebo, single- and multiple dose, observer-blind, randomized dose-escalation) are described. Intranasal administration of ALN-RSV01 was well tolerated over a dose range up through 150mg as a single dose and for five daily doses. Adverse events were similar in frequency and severity to placebo (normal saline) and were transient, mild to moderate, with no dose-dependent trend. The frequency or severity of adverse events did not increase with increasing ALN-RSV01 exposure. All subjects completed all treatments and assessments with no early withdrawals or serious adverse events. Physical examinations, vital signs, ECGs and laboratory tests were normal. Systemic bioavailability of ALN-RSV01 was minimal. ALN-RSV01 appears safe and well tolerated when delivered intranasally and is a promising therapeutic candidate for further clinical development.


Assuntos
Antivirais/efeitos adversos , Antivirais/farmacocinética , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Administração Intranasal , Adolescente , Adulto , Antivirais/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/administração & dosagem
16.
Chem Res Toxicol ; 20(2): 187-98, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17256975

RESUMO

The 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2S,3S-butanediol intrastrand DNA cross-link arises from the bis-alkylation of tandem N(6)-dA sites in DNA by R,R-butadiene diepoxide (BDO(2)). The oligodeoxynucleotide 5'-d(C(1)G(2)G(3)A(4)C(5)X(6)Y(7)G(8)A(9)A(10)G(11))-3'.5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19)C(20)C(21)G(22))-3' contains the BDO(2) cross-link between the second and third adenines of the codon 61 sequence (underlined) of the human N-ras protooncogene and is named the (S,S)-BD-(61-2,3) cross-link (X,Y = cross-linked adenines). NMR analysis reveals that the cross-link is oriented in the major groove of duplex DNA. Watson-Crick base pairing is perturbed at base pair X(6).T(17), whereas base pairing is intact at base pair Y(7).T(16). The cross-link appears to exist in two conformations, in rapid exchange on the NMR time scale. In the first conformation, the beta-OH is predicted to form a hydrogen bond with T(16) O(4), whereas in the second, the beta-OH is predicted to form a hydrogen bond with T(17) O(4). In contrast to the (R,R)-BD-(61-2,3) cross-link in the same sequence (Merritt, W. K., Nechev, L. V., Scholdberg, T. A., Dean, S. M., Kiehna, S. E., Chang, J. C., Harris, T. M., Harris, C. M., Lloyd, R. S., and Stone, M. P. (2005) Biochemistry 44, 10081-10092), the anti-conformation of the two hydroxyl groups at C(beta) and C(gamma) with respect to the C(beta)-C(gamma) bond results in a decreased twist between base pairs X(6).T(17) and Y(7).T(16), and an approximate 10 degrees bending of the duplex. These conformational differences may account for the differential mutagenicity of the (S,S)- and (R,R)-BD-(61-2,3) cross-links and suggest that stereochemistry plays a role in modulating biological responses to these cross-links (Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580).


Assuntos
Códon/química , Adutos de DNA/química , Compostos de Epóxi/química , Genes ras/genética , Butileno Glicóis , Desoxiadenosinas , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Modelos Moleculares , Estrutura Molecular , Oligodesoxirribonucleotídeos/química , Padrões de Referência , Sensibilidade e Especificidade , Relação Estrutura-Atividade
17.
Nature ; 441(7089): 111-4, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16565705

RESUMO

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Assuntos
Primatas/genética , Interferência de RNA/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Animais , Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
18.
J Am Chem Soc ; 127(50): 17686-96, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16351098

RESUMO

The interstrand N2,N2-dG DNA cross-linking chemistry of the acrolein-derived gamma-OH-1,N2-propanodeoxyguanosine (gamma-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was cross-linked, with the carbinolamine form of the cross-link predominating. The cross-link existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde/diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C x G base pairs. In contrast, dehydration of the carbinolamine cross-link to an imine (Schiff base) cross-link, or cyclization of the latter to form a pyrimidopurinone cross-link, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked C x G base pairs. When the gamma-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no cross-link, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide cross-links efficiently. When annealed opposite dA, gamma-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand cross-links formed by acrolein and perhaps other alpha,beta-unsaturated aldehydes. These sequence-specific carbinolamine cross-links are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity.


Assuntos
Acroleína/química , Ilhas de CpG , Adutos de DNA/química , DNA/química , Desoxiguanosina/análogos & derivados , Acroleína/análogos & derivados , Isótopos de Carbono , Reagentes de Ligações Cruzadas/química , Desoxiguanosina/química , Ligação de Hidrogênio , Marcação por Isótopo , Modelos Moleculares , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Oligopeptídeos/química , Estereoisomerismo , Especificidade por Substrato
19.
DNA Repair (Amst) ; 4(12): 1374-80, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16257273

RESUMO

The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.


Assuntos
DNA Polimerase II/metabolismo , Replicação do DNA , DNA/química , DNA/metabolismo , Escherichia coli/enzimologia , Mutagênese , DNA/biossíntese , DNA/genética , Compostos de Epóxi/farmacologia , Transformação Genética
20.
Biochemistry ; 44(30): 10081-92, 2005 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16042385

RESUMO

The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].


Assuntos
Alquilantes/química , Butadienos/química , Butileno Glicóis/química , Códon/metabolismo , Adutos de DNA/química , Desoxiadenosinas/química , Compostos de Epóxi/química , Genes ras/efeitos dos fármacos , Pareamento de Bases/efeitos dos fármacos , Butadienos/farmacologia , Reagentes de Ligações Cruzadas/química , Compostos de Epóxi/farmacologia , Humanos , Mutagênicos/química , Ressonância Magnética Nuclear Biomolecular , Ácidos Nucleicos Heteroduplexes/química , Oligodesoxirribonucleotídeos/química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...