Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133849, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004246

RESUMO

Hereditary ataxias are one of the «anticipation diseases¼ types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.

2.
Biophys Rev ; 15(5): 1269-1278, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974982

RESUMO

Despite the fact that the investigation of the structural and functional properties of hemoglobin dates back more than 150 years, the topic has not lost its relevance today. The most important component of these studies is the development of mathematical models that formalize and generalize the mechanisms determining the cooperative binding of ligands based on data on the structural and functional state of the protein. In this work, we review the mathematical relationships describing oxygen binding by hemoglobin, ranging from the classical Hüfner, Hill, and Adair equations to the Szabo-Karplus and tertiary two-state mathematical models based on the Monod-Wyman-Changeux and Koshland-Némethy-Filmer concepts. The generality of the considered equations as mathematical functions, bearing in their basis a power dependence, is demonstrated. The problems and possible solutions related to approximation of experimental data by the oxygenation equations with correlated fitting parameters are noted. Attention is paid to empirical equations, extended versions of the Hill equation, where the coefficient of cooperation is modulated by Gauss and Lorentz distributions as functions of partial oxygen pressure.

3.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569512

RESUMO

The influence of a single 2H/1H replacement on the frequency generation of different-size bubbles in the human interferon alpha-17 gene (IFNA17) under various energies was studied by a developed algorithm and mathematical modeling without simplifications or averaging. This new approach showed the efficacy of researching DNA bubbles and open states both when all hydrogen bonds in nitrogenous base pairs are protium and after an 2H-substitution. After a single deuterium substitution under specific energies, it was demonstrated that the non-coding region of IFNA17 had a more significant regulatory role in bubble generation in the whole gene than the promoter had. It was revealed that a single deuterium substitution for protium has an influence on the frequency generation of DNA bubbles, which also depends on their size and is always higher for the smaller bubbles under the largest number of the studied energies. Wherein, compared to the natural condition under the same critical value of energy, the bigger raises of the bubble frequency occurrence (maximums) were found for 11-30 base pair (bp) bubbles (higher by 319%), 2-4 bp bubbles (higher by 300%), and 31 bp and over ones (higher by 220%); whereas the most significant reductions of the indicators (minimums) were observed for 11-30 bp bubbles (lower by 43%) and bubbles size over 30 bp (lower by 82%). In this study, we also analyzed the impact of several circumstances on the AT/GC ratio in the formation of DNA bubbles, both under natural conditions and after a single hydrogen isotope exchange. Moreover, based on the obtained data, substantial positive and inverse correlations were revealed between the AT/GC ratio and some factors (energy values, size of DNA bubbles). So, this modeling and variant of the modified algorithm, adapted for researching DNA bubbles, can be useful to study the regulation of replication and transcription in the genes under different isotopic substitutions in the nucleobases.


Assuntos
Hidrogênio , Modelos Teóricos , Humanos , Deutério , Pareamento de Bases , DNA/química
4.
Entropy (Basel) ; 25(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37510014

RESUMO

The problem of the degradation and aging of bioorganisms is herein considered from the viewpoint of statistical physics. Two typical timescales in biological systems-the time of metabolic processes and the time of the life cycle-are used. A kinetic equation describing the small timescales of the systems' characteristic processes in is proposed. Maintaining a biosystem in a time-stable state requires a constant inflow of negative entropy (negentropy). Ratios are proposed to evaluate the aging and degradation of systems in terms of entropy. As an example, the aging of the epithelium is studied. The connection of our approach to the information theory of aging is discussed, as well as theoretical constructions related to the concept of cooperon and its changing with time.

5.
Front Immunol ; 13: 1050478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532011

RESUMO

Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.


Assuntos
COVID-19 , Animais , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Internalização do Vírus , Fagócitos
6.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232664

RESUMO

Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anticorpos Antivirais , Anticorpos Facilitadores , Humanos , SARS-CoV-2
7.
Entropy (Basel) ; 24(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36141103

RESUMO

The study of hemoglobin oxygenation, starting from the classical works of Hill, has laid the foundation for molecular biophysics. The cooperative nature of oxygen binding to hemoglobin has been variously described in different models. In the Adair model, which better fits the experimental data, the constants of oxygen binding at various stages differ. However, the physical meaning of the parameters in this model remains unclear. In this work, we applied Hill's approach, extending its interpretation; we obtained a good agreement between the theory and the experiment. The equation in which the Hill coefficient is modulated by the Lorentz distribution for oxygen partial pressure approximates the experimental data better than not only the classical Hill equation, but also the Adair equation.

8.
Entropy (Basel) ; 24(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35205467

RESUMO

Some problems of describing biological systems with the use of entropy as a measure of the complexity of these systems are considered. Entropy is studied both for the organism as a whole and for its parts down to the molecular level. Correlation of actions of various parts of the whole organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a more complex structure and lower statistical entropy. For a multicellular organism, entropy is much lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli test scheme. Particular attention is paid to the qualitative and quantitative relationship between the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic model of metabolism. corresponding to Schrödinger's concept of the maintenance biosystems by "negentropy feeding", is proposed. This model allows calculating the nonequilibrium local entropy and comparing it with the local equilibrium entropy inherent in non-living matter.

9.
Entropy (Basel) ; 23(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34828144

RESUMO

Fluctuations in viscosity within the cell nucleus have wide limits. When a DNA molecule passes from the region of high viscosity values to the region of low values, open states, denaturation bubbles, and unweaving of DNA strands can occur. Stabilization of the molecule is provided by energy dissipation-dissipation due to interaction with the environment. Separate sections of a DNA molecule in a twisted state can experience supercoiling stress, which, among other things, is due to complex entropic effects caused by interaction with a solvent. In this work, based on the numerical solution of a mechanical mathematical model for the interferon alpha 17 gene and a fragment of the Drosophila gene, an analysis of the external environment viscosity influence on the dynamics of the DNA molecule and its stability was carried out. It has been shown that an increase in viscosity leads to a rapid stabilization of the angular vibrations of nitrogenous bases, while a decrease in viscosity changes the dynamics of DNA: the rate of change in the angular deviations of nitrogenous bases increases and the angular deformations of the DNA strands increase at each moment of time. These processes lead to DNA instability, which increases with time. Thus, the paper considers the influence of the external environment viscosity on the dissipation of the DNA nitrogenous bases' vibrational motion energy. Additionally, the study on the basis of the described model of the molecular dynamics of physiological processes at different indicators of the rheological behavior of nucleoplasm will allow a deeper understanding of the processes of nonequilibrium physics of an active substance in a living cell to be obtained.

10.
Biology (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571729

RESUMO

COVID-19 has specific characteristics that distinguish this disease from many other infections. We suggest that the pathogenesis of severe forms of COVID-19 can be associated with acidosis. This review article discusses several mechanisms potentially linking the damaging effects of COVID-19 with acidosis and shows the existence of a vicious cycle between the development of hypoxia and acidosis in COVID-19 patients. At the early stages of the disease, inflammation, difficulty in gas exchange in the lungs and thrombosis collectively contribute to the onset of acidosis. In accordance with the Verigo-Bohr effect, a decrease in blood pH leads to a decrease in oxygen saturation, which contributes to the exacerbation of acidosis and results in a deterioration of the patient's condition. A decrease in pH can also cause conformational changes in the S-protein of the virus and thus lead to a decrease in the affinity and avidity of protective antibodies. Hypoxia and acidosis lead to dysregulation of the immune system and multidirectional pro- and anti-inflammatory reactions, resulting in the development of a "cytokine storm". In this review, we highlight the potential importance of supporting normal blood pH as an approach to COVID-19 therapy.

11.
J Health Care Poor Underserved ; 32(3): 1320-1338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421034

RESUMO

To describe the dynamics and forecast the main parameters of the COVID-19 pandemic, the time series of daily cases in the World Health Organization African Region (WHOAR) from February 26th to December 29th, 2020 was analyzed. Estimates for expected values of parameters characterizing an epidemic (size of the epidemic, turning point, maximum value of daily cases, and basic reproductive number) were provided for both the first and the second wave, and for the entire ongoing pandemic in WHOAR. To this aim, the classical SIR (Susceptible-Infected-Removed) model and its approximations were applied to each identified wave. Our results suggest that the turning point of the COVID-19 first wave took place around July 20th, 2020. The first wave was expected to disappear by mid-December 2020, with a total of 1,200,000 expected cases. The second wave apparently started around August 19th, with an expected turning point by January 12th, 2021. The second wave is expected to end by August 9th, 2021, with 1,800,000 cumulative cases, and mounting up to 3,000,000 total cases between February 2020 and August 2021. Estimated basic reproduction numbers (R0) were 1.27 (first wave) and 1.15 (second wave); the expected total number of deaths is around 66,000 victims.


Assuntos
COVID-19/epidemiologia , África Subsaariana/epidemiologia , Número Básico de Reprodução , Humanos , Modelos Biológicos , Pandemias , SARS-CoV-2 , Organização Mundial da Saúde
12.
Bioessays ; 42(11): e2000051, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32830350

RESUMO

Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.


Assuntos
Citosina , DNA , 5-Metilcitosina , Pareamento de Bases/genética , DNA/genética , Epigênese Genética , Conformação de Ácido Nucleico
13.
Sci Rep ; 10(1): 8635, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451390

RESUMO

In the course of sample preparation for Next Generation Sequencing (NGS), DNA is fragmented by various methods. Fragmentation shows a persistent bias with regard to the cleavage rates of various dinucleotides. With the exception of CpG dinucleotides the previously described biases were consistent with results of the DNA cleavage in solution. Here we computed cleavage rates of all dinucleotides including the methylated CpG and unmethylated CpG dinucleotides using data of the Whole Genome Sequencing datasets of the 1000 Genomes project. We found that the cleavage rate of CpG is significantly higher for the methylated CpG dinucleotides. Using this information, we developed a classifier for distinguishing cancer and healthy tissues based on their CpG islands statuses of the fragmentation. A simple Support Vector Machine classifier based on this algorithm shows an accuracy of 84%. The proposed method allows the detection of epigenetic markers purely based on mechanochemical DNA fragmentation, which can be detected by a simple analysis of the NGS sequencing data.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linhagem Celular Tumoral , Ilhas de CpG , Fragmentação do DNA , Bases de Dados Genéticas , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias/genética , Neoplasias/patologia , Análise de Sequência de DNA , Máquina de Vetores de Suporte
14.
BMC Genomics ; 17(1): 973, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884105

RESUMO

BACKGROUND: The general structure and action of all eukaryotic and archaeal RNA polymerases machinery have an astonishing similarity despite the diversity of core promoter sequences in different species. The goal of our work is to find common characteristics of DNA region that define it as a promoter for the RNA polymerase II (Pol II). RESULTS: The profiles of a large number of physical and structural characteristics, averaged over representative sets of the Pol II minimal core promoters of the evolutionary divergent species from animals, plants and unicellular fungi were analysed. In addition to the characteristics defined at the base-pair steps, we, for the first time, use profiles of the ultrasonic cleavage and DNase I cleavage indexes, informative for internal properties of each complementary strand. CONCLUSIONS: DNA of the core promoters of metazoans and Schizosaccharomyces pombe has similar structural organization. Its mechanical and 3D structural characteristics have singular properties at the positions of TATA-box. The minor groove is broadened and conformational motion is decreased in that region. Special characteristics of conformational behavior are revealed in metazoans at the region, which connects the end of TATA-box and the transcription start site (TSS). The intensities of conformational motions in the complementary strands are periodically changed in opposite phases. They are noticeable, best of all, in mammals. Such conformational features are lacking in the core promoters of S. pombe. The profiles of Saccharomyces cerevisiae core promoters significantly differ: their singular region is shifted down thus pointing to the uniqueness of their structural organization. Obtained results may be useful in genetic engineering for artificial modulation of the promoter strength.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Polimerase II/genética , Animais , Sequência de Bases , Clivagem do DNA , Variação Genética , Humanos , Motivos de Nucleotídeos , Schizosaccharomyces/genética , TATA Box , Sítio de Iniciação de Transcrição
15.
Bioinformatics ; 32(17): i552-i558, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27587674

RESUMO

MOTIVATION: Target-specific hybridization depends on oligo-probe characteristics that improve hybridization specificity and minimize genome-wide cross-hybridization. Interplay between specific hybridization and genome-wide cross-hybridization has been insufficiently studied, despite its crucial role in efficient probe design and in data analysis. RESULTS: In this study, we defined hybridization specificity as a ratio between oligo target-specific hybridization and oligo genome-wide cross-hybridization. A microarray database, derived from the Genomic Comparison Hybridization (GCH) experiment and performed using the Affymetrix platform, contains two different types of probes. The first type of oligo-probes does not have a specific target on the genome and their hybridization signals are derived from genome-wide cross-hybridization alone. The second type includes oligonucleotides that have a specific target on the genomic DNA and their signals are derived from specific and cross-hybridization components combined together in a total signal. A comparative analysis of hybridization specificity of oligo-probes, as well as their nucleotide sequences and thermodynamic features was performed on the database. The comparison has revealed that hybridization specificity was negatively affected by low stability of the fully-paired oligo-target duplex, stable probe self-folding, G-rich content, including GGG motifs, low sequence complexity and nucleotide composition symmetry. CONCLUSION: Filtering out the probes with defined 'negative' characteristics significantly increases specific hybridization and dramatically decreasing genome-wide cross-hybridization. Selected oligo-probes have two times higher hybridization specificity on average, compared to the probes that were filtered from the analysis by applying suggested cutoff thresholds to the described parameters. A new approach for efficient oligo-probe design is described in our study. CONTACT: shabalin@ncbi.nlm.nih.gov or olga.matveeva@gmail.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Razão Sinal-Ruído , Sondas de DNA , Perfilação da Expressão Gênica , Genômica , Oligonucleotídeos , Sensibilidade e Especificidade
16.
Sci Rep ; 4: 4532, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24681819

RESUMO

Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed "reads" are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

17.
Biophys J ; 100(1): 117-25, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21190663

RESUMO

We investigated the phenomenon of ultrasonic cleavage of DNA by analyzing a large set of cleavage patterns of DNA restriction fragments using polyacrylamide gel electrophoresis. The cleavage intensity of individual phosphodiester bonds was found to depend on the nucleotide sequence and the position of the bond with respect to the ends of the fragment. The relative intensities of cleavage of the central phosphodiester bond in 16 dinucleotides and 256 tetranucleotides were determined by multivariate statistical analysis. We observed a remarkable enhancement of the mean values of the relative intensities of cleavage (cleavage rates) in phosphodiester bonds following deoxycytidine, which diminished in the row of dinucleotides: d(CpG) > d(CpA) > d(CpT) >> d(CpC). The cleavage rates for all pairs of complementary dinucleotides were significantly different from each other. The effect of flanking nucleotides in tetranucleotides on cleavage rates of all 16 types of central dinucleotides was also statistically significant. The sequence-dependent ultrasonic cleavage rates of dinucleotides are consistent with reported data on the intensity of the conformational motion of their 5'-deoxyribose. As a measure of local conformational dynamics, cleavage rates may be useful for characterizing functional regions of the genome.


Assuntos
DNA/genética , DNA/metabolismo , Ultrassom/métodos , Sequência de Bases , DNA/química , Eletroforese em Gel de Poliacrilamida , Fenômenos Físicos , Maleabilidade , Soluções
18.
PLoS One ; 5(4): e10180, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20422034

RESUMO

Prediction of efficient oligonucleotides for RNA interference presents a serious challenge, especially for the development of genome-wide RNAi libraries which encounter difficulties and limitations due to ambiguities in the results and the requirement for significant computational resources. Here we present a fast and practical algorithm for shRNA design based on the thermodynamic parameters. In order to identify shRNA and siRNA features universally associated with high silencing efficiency, we analyzed structure-activity relationships in thousands of individual RNAi experiments from publicly available databases (ftp://ftp.ncbi.nlm.nih.gov/pub/shabalin/siRNA/si_shRNA_selector/). Using this statistical analysis, we found free energy ranges for the terminal duplex asymmetry and for fully paired duplex stability, such that shRNAs or siRNAs falling in both ranges have a high probability of being efficient. When combined, these two parameters yield a approximately 72% success rate on shRNAs from the siRecords database, with the target RNA levels reduced to below 20% of the control. Two other parameters correlate well with silencing efficiency: the stability of target RNA and the antisense strand secondary structure. Both parameters also correlate with the short RNA duplex stability; as a consequence, adding these parameters to our prediction scheme did not substantially improve classification accuracy. To test the validity of our predictions, we designed 83 shRNAs with optimal terminal asymmetry, and experimentally verified that small shifts in duplex stability strongly affected silencing efficiency. We showed that shRNAs with short fully paired stems could be successfully selected by optimizing only two parameters: terminal duplex asymmetry and duplex stability of the hypothetical cleavage product, which also relates to the specificity of mRNA target recognition. Our approach performs at the level of the best currently utilized algorithms that take into account prediction of the secondary structure of the target and antisense RNAs, but at significantly lower computational costs. Based on this study, we created the si-shRNA Selector program that predicts both highly efficient shRNAs and functional siRNAs (ftp://ftp.ncbi.nlm.nih.gov/pub/shabalin/siRNA/si_shRNA_selector/).


Assuntos
Algoritmos , Desenho de Fármacos , Estabilidade de RNA , RNA Interferente Pequeno/química , Bases de Dados de Ácidos Nucleicos , Inativação Gênica , Conformação de Ácido Nucleico , Interferência de RNA , Termodinâmica
19.
J Biomol Struct Dyn ; 26(2): 187-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18597540

RESUMO

Unselective and reversible adsorption of ligands on DNA for a model of binding proposed by Zasedatelev, Gursky, and Volkenshtein is considered. In this model, the interaction between neighboring ligands located at the distance of i binding centers is characterized by the statistical weight ai. Each ligand covers L binding centers. For this model, expressions for binding averages are represented in a new simple form. This representation is convenient for the calculation of the fraction of inter-ligand distances of i binding centers fd(i) and the fraction of binding centers included in the distances of i binding centers fbc(i) for various types of interaction between bound ligands. It is shown that, for non-cooperative binding, contact cooperativity and long-range cooperativity, the fraction of the zero inter-ligand distance fd(0) is maximal at any relative concentration of bound ligands (r). Calculations demonstrate that, at low r, fd(0) approximately r.ao, and fd(i) approximately r at 11/r-L, then fd(i) rapidly decreases with i at any r for all types of inter-ligand interaction. At high ligand concentration (r is close to rmax=L(-1)), fd(0) is close to unity and fd(i) rapidly decreases with i for any type of inter-ligand interaction. For strong contact cooperativity, fd(0) is close to unity in a much lager r interval ((0.5-1).rmax), and fd(1) approximately ao(-1) at r approximately 0.5.rmax. In the case of long-range interaction between bound ligands, the dependence fd(i) is more complex and has a maximum at i approximately (1/r-L)1/2 for anti-cooperative binding. fbc(i) is maximal at i approximately 1/r-L for all types of binding except the contact cooperativity. A strong asymmetry in the influence of contact cooperativity and anticooperativity on the ligand distribution along DNA is demonstrated.


Assuntos
DNA/metabolismo , Ligantes , Modelos Teóricos , Matemática
20.
Nucleic Acids Res ; 35(8): e63, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17426130

RESUMO

Current literature describes several methods for the design of efficient siRNAs with 19 perfectly matched base pairs and 2 nt overhangs. Using four independent databases totaling 3336 experimentally verified siRNAs, we compared how well several of these methods predict siRNA cleavage efficiency. According to receiver operating characteristics (ROC) and correlation analyses, the best programs were BioPredsi, ThermoComposition and DSIR. We also studied individual parameters that significantly and consistently correlated with siRNA efficacy in different databases. As a result of this work we developed a new method which utilizes linear regression fitting with local duplex stability, nucleotide position-dependent preferences and total G/C content of siRNA duplexes as input parameters. The new method's discrimination ability of efficient and inefficient siRNAs is comparable with that of the best methods identified, but its parameters are more obviously related to the mechanisms of siRNA action in comparison with BioPredsi. This permits insight to the underlying physical features and relative importance of the parameters. The new method of predicting siRNA efficiency is faster than that of ThermoComposition because it does not employ time-consuming RNA secondary structure calculations and has much less parameters than DSIR. It is available as a web tool called 'siRNA scales'.


Assuntos
RNA Interferente Pequeno/química , Software , Algoritmos , Composição de Bases , Bases de Dados Genéticas , Internet , Modelos Lineares , Nucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...