Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883280

RESUMO

Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but "Streptomyces philanthi" also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that-compared to in vitro symbiont cultures-"S. philanthi" in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host-symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.


Assuntos
Antibacterianos/biossíntese , Genoma Bacteriano , Pseudogenes , Streptomyces/genética , Vespas/microbiologia , Animais , Antenas de Artrópodes/metabolismo , Feminino , Chaperonas Moleculares/metabolismo , Streptomyces/metabolismo , Simbiose
2.
Proc Natl Acad Sci U S A ; 115(9): E2020-E2029, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444867

RESUMO

The increasing resistance of human pathogens severely limits the efficacy of antibiotics in medicine, yet many animals, including solitary beewolf wasps, successfully engage in defensive alliances with antibiotic-producing bacteria for millions of years. Here, we report on the in situ production of 49 derivatives belonging to three antibiotic compound classes (45 piericidin derivatives, 3 streptochlorin derivatives, and nigericin) by the symbionts of 25 beewolf host species and subspecies, spanning 68 million years of evolution. Despite a high degree of qualitative stability in the antibiotic mixture, we found consistent quantitative differences between species and across geographic localities, presumably reflecting adaptations to combat local pathogen communities. Antimicrobial bioassays with the three main components and in silico predictions based on the structure and specificity in polyketide synthase domains of the piericidin biosynthesis gene cluster yield insights into the mechanistic basis and ecoevolutionary implications of producing a complex mixture of antimicrobial compounds in a natural setting.


Assuntos
Antibacterianos/química , Indóis/química , Nigericina/análogos & derivados , Oxazóis/química , Piridinas/química , Streptomyces/efeitos dos fármacos , Simbiose , Vespas/microbiologia , Animais , Bioensaio , Evolução Biológica , Ecologia , Fungos , Testes de Sensibilidade Microbiana , Nigericina/química , Especificidade da Espécie , Streptomyces/metabolismo
3.
Nat Commun ; 8(1): 60, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680072

RESUMO

Intriguing, yet uncultured 'ARMAN'-like archaea are metabolically dependent on other members of the microbial community. It remains uncertain though which hosts they rely upon, and, because of the lack of complete genomes, to what extent. Here, we report the co-culturing of ARMAN-2-related organism, Mia14, with Cuniculiplasma divulgatum PM4 during the isolation of this strain from acidic streamer in Parys Mountain (Isle of Anglesey, UK). Mia14 is highly enriched in the binary culture (ca. 10% genomic reads) and its ungapped 0.95 Mbp genome points at severe voids in central metabolic pathways, indicating dependence on the host, C. divulgatum PM4. Analysis of C. divulgatum isolates from different sites and shotgun sequence data of Parys Mountain samples suggests an extensive genetic exchange between Mia14 and hosts in situ. Within the subset of organisms with high-quality genomic assemblies representing the 'DPANN' superphylum, the Mia14 lineage has had the largest gene flux, with dozens of genes gained that are implicated in the host interaction.In the absence of complete genomes, the metabolic capabilities of uncultured ARMAN-like archaea have been uncertain. Here, Golyshina et al. apply an enrichment culture technique and find that the ungapped genome of the ARMAN-like archaeon Mia14 has lost key metabolic pathways, suggesting dependence on the host archaeon Cuniculiplasma divulgatum.


Assuntos
Archaea/classificação , Archaea/fisiologia , Archaea/genética , Regulação da Expressão Gênica em Archaea , Variação Genética , Genoma Arqueal , Microscopia de Fluorescência , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
4.
Sci Rep ; 7(1): 3682, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623373

RESUMO

Ferroplasmaceae represent ubiquitous iron-oxidising extreme acidophiles with a number of unique physiological traits. In a genome-based study of Ferroplasma acidiphilum YT, the only species of the genus Ferroplasma with a validly published name, we assessed its central metabolism and genome stability during a long-term cultivation experiment. Consistently with physiology, the genome analysis points to F. acidiphilum YT having an obligate peptidolytic oligotrophic lifestyle alongside with anaplerotic carbon assimilation. This narrow trophic specialisation abridges the sugar uptake, although all genes for glycolysis and gluconeogenesis, including bifunctional unidirectional fructose 1,6-bisphosphate aldolase/phosphatase, have been identified. Pyruvate and 2-oxoglutarate dehydrogenases are substituted by 'ancient' CoA-dependent pyruvate and alpha-ketoglutarate ferredoxin oxidoreductases. In the lab culture, after ~550 generations, the strain exhibited the mutation rate of ≥1.3 × 10-8 single nucleotide substitutions per site per generation, which is among the highest values recorded for unicellular organisms. All but one base substitutions were G:C to A:T, their distribution between coding and non-coding regions and synonymous-to-non-synonymous mutation ratios suggest the neutral drift being a prevalent mode in genome evolution in the lab culture. Mutations in nature seem to occur with lower frequencies, as suggested by a remarkable genomic conservation in F. acidiphilum YT variants from geographically distant populations.


Assuntos
Archaea/metabolismo , Evolução Biológica , Metabolismo Energético , Aminoácidos/metabolismo , Archaea/genética , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo de Erro de Pareamento de DNA , Evolução Molecular , Regulação da Expressão Gênica , Genoma Arqueal , Genômica/métodos , Redes e Vias Metabólicas , Mutação , Recombinação Genética
5.
Sci Rep ; 6: 39034, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966672

RESUMO

The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed 'G-plasma'. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1-1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with 'G-plasma'. Organisms had largest genomes among Thermoplasmatales (1.87-1.94 Mbp), that shared 98.7-98.8% average nucleotide identities between themselves and 'G-plasma' and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.


Assuntos
Ácidos/química , Ecossistema , Euryarchaeota/genética , Genoma Arqueal/genética , Thermoplasmales/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , California , Euryarchaeota/classificação , Euryarchaeota/metabolismo , Genômica/métodos , Geografia , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Thermoplasmales/metabolismo , Thermoplasmales/ultraestrutura , Reino Unido
6.
Appl Environ Microbiol ; 81(6): 2125-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595762

RESUMO

The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (≤52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (≤356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Decápodes/microbiologia , Brânquias/microbiologia , Metagenoma , Microbiota , Animais , Oceano Atlântico , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Fontes Hidrotermais , Metagenômica , Dados de Sequência Molecular , Sais/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
7.
BMC Microbiol ; 14: 202, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25266732

RESUMO

BACKGROUND: 'Candidatus Streptomyces philanthi' is a monophyletic clade of formerly uncultured bacterial symbionts in solitary digger wasps of the genera Philanthus, Philanthinus and Trachypus (Hymenoptera, Crabronidae). These bacteria grow in female-specific antennal reservoirs and - after transmission to the cocoon - produce antibiotics protecting the host larvae from fungal infection. However, the symbionts' refractoriness to cultivation has thus far hampered detailed in vitro studies on their physiology and on the evolutionary changes in metabolic versatility in response to the host environment. RESULTS: Here we isolated in axenic culture 22 'Streptomyces philanthi' biovars from different host species. Sequencing of gyrB revealed no heterogeneity among isolates within host individuals, suggesting low levels of (micro)diversity or even clonality of the symbionts in individual beewolf antennae. Surprisingly, however, isolates from different host species differed strongly in their physiology. All biovars from the Eurasian/African Philanthus and the South American Trachypus host species had high nutritional demands and were susceptible to most antibiotics tested, suggesting a tight association with the hosts. By contrast, biovars isolated from the genus Philanthinus and the monophyletic North American Philanthus clade were metabolically versatile and showed broad antibiotic resistance. Concordantly, recent horizontal symbiont transfer events - reflected in different symbiont strains infecting the same host species - have been described only among North American Philanthus species, altogether indicative of facultative symbionts potentially capable of a free-living lifestyle. Phylogenetic analyses reveal a strong correlation between symbiont metabolic versatility and host phylogeny, suggesting that the host environment differentially affects the symbionts' evolutionary fate. Although opportunistic bacteria were occasionally isolated from the antennae of different host species, only filamentous Actinobacteria (genera Streptomyces, Amycolatopsis and Nocardia) could replace 'S. philanthi' in the antennal gland reservoirs. CONCLUSION: Our results indicate that closely related bacteria from a monophyletic clade of symbionts can experience very different evolutionary trajectories in response to the symbiotic lifestyle, which is reflected in different degrees of metabolic versatility and host-dependency. We propose that the host-provided environment could be an important factor in shaping the degenerative metabolic evolution in the symbionts and deciding whether they evolve into obligate symbionts or remain facultative and capable of a host-independent lifestyle.


Assuntos
Interações Hospedeiro-Parasita , Himenópteros/microbiologia , Streptomyces/classificação , Streptomyces/fisiologia , Simbiose , Animais , Antenas de Artrópodes/microbiologia , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Feminino , Dados de Sequência Molecular , Análise de Sequência de DNA , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(17): 6359-64, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733936

RESUMO

Many insects rely on symbiotic microbes for survival, growth, or reproduction. Over evolutionary timescales, the association with intracellular symbionts is stabilized by partner fidelity through strictly vertical symbiont transmission, resulting in congruent host and symbiont phylogenies. However, little is known about how symbioses with extracellular symbionts, representing the majority of insect-associated microorganisms, evolve and remain stable despite opportunities for horizontal exchange and de novo acquisition of symbionts from the environment. Here we demonstrate that host control over symbiont transmission (partner choice) reinforces partner fidelity between solitary wasps and antibiotic-producing bacteria and thereby stabilizes this Cretaceous-age defensive mutualism. Phylogenetic analyses show that three genera of beewolf wasps (Philanthus, Trachypus, and Philanthinus) cultivate a distinct clade of Streptomyces bacteria for protection against pathogenic fungi. The symbionts were acquired from a soil-dwelling ancestor at least 68 million years ago, and vertical transmission via the brood cell and the cocoon surface resulted in host-symbiont codiversification. However, the external mode of transmission also provides opportunities for horizontal transfer, and beewolf species have indeed exchanged symbiont strains, possibly through predation or nest reuse. Experimental infection with nonnative bacteria reveals that--despite successful colonization of the antennal gland reservoirs--transmission to the cocoon is selectively blocked. Thus, partner choice can play an important role even in predominantly vertically transmitted symbioses by stabilizing the cooperative association over evolutionary timescales.


Assuntos
Evolução Biológica , Streptomyces/fisiologia , Simbiose/fisiologia , Vespas/microbiologia , Animais , Feminino , Filogenia , Fatores de Tempo
9.
Nat Commun ; 4: 2156, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23877221

RESUMO

Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis--the paradigm of mesophilic hydrocarbonoclastic bacteria--O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/química , Gammaproteobacteria/genética , Genoma Bacteriano , Chaperonas Moleculares/química , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biodegradação Ambiental , Mapeamento Cromossômico , Temperatura Baixa , Gammaproteobacteria/classificação , Gammaproteobacteria/metabolismo , Transferência Genética Horizontal , Tamanho do Genoma , Óleos Industriais , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Filogenia , Dobramento de Proteína , Salinidade , Análise de Sequência de DNA
10.
Biochem J ; 454(1): 157-66, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23750508

RESUMO

Several members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/ß hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate. Using structural analysis and site-directed mutagenesis we have identified the three residues (Ser32, Val130 and Trp144) that determine the unusual substrate specificity of one of these proteins, CCSP0084. The results may open up new research avenues into comparative catalytic models, structural and mechanistic studies, and biotechnological applications of MCP hydrolases.


Assuntos
Proteínas de Bactérias/química , Esterases/química , Evolução Molecular , Hidrolases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Burkholderia/química , Cristalografia por Raios X , Esterases/genética , Hidrolases/genética , Dados de Sequência Molecular , Proteobactérias/química , Pseudomonas/química , Pseudomonas/genética , Sphingomonas/química , Sphingomonas/genética
11.
Cell Microbiol ; 15(11): 1896-912, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23782461

RESUMO

Helicobacter pylori is a bacterial pathogen that colonizes the gastric niche of ∼ 50% of the human population worldwide and is known to cause peptic ulceration and gastric cancer. Pathology of infection strongly depends on a cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). Here, we aimed to identify as yet unknown bacterial factors involved in cagPAI effector function and performed a large-scale screen of an H. pylori transposon mutant library using activation of the pro-inflammatory transcription factor NF-κB in human gastric epithelial cells as a measure of T4SS function. Analysis of ∼ 3000 H. pylori mutants revealed three non-cagPAI genes that affected NF-κB nuclear translocation. Of these, the outer membrane protein HopQ from H. pylori strain P12 was essential for CagA translocation and for CagA-mediated host cell responses such as formation of the hummingbird phenotype and cell scattering. Besides that, deletion of hopQ reduced T4SS-dependent activation of NF-κB, induction of MAPK signalling and secretion of interleukin 8 (IL-8) in the host cells, but did not affect motility or the quantity of bacteria attached to host cells. Hence, we identified HopQ as a non-cagPAI-encoded cofactor of T4SS function.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos , Helicobacter pylori/metabolismo , Fatores de Virulência/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Elementos de DNA Transponíveis , Células Epiteliais/microbiologia , Deleção de Genes , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Interleucina-8/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , NF-kappa B/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Fatores de Virulência/genética
12.
Biotechnol Biofuels ; 5(1): 73, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998985

RESUMO

BACKGROUND: A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. RESULTS: In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45-55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (pNPbetaG) and pNP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using pNPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of pNPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96-120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2-38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays. CONCLUSIONS: The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases.

13.
PLoS One ; 7(6): e38134, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761666

RESUMO

Microbial communities from cow rumen are known for their ability to degrade diverse plant polymers at high rates. In this work, we identified 15 hydrolases through an activity-centred metagenome analysis of a fibre-adherent microbial community from dairy cow rumen. Among them, 7 glycosyl hydrolases (GHs) and 1 feruloyl esterase were successfully cloned, expressed, purified and characterised. The most striking result was a protein of GH family 43 (GHF43), hereinafter designated as R_09-02, which had characteristics very distinct from the other proteins in this family with mono-functional ß-xylosidase, α-xylanase, α-L-arabinase and α-L-arabinofuranosidase activities. R_09-02 is the first multifunctional enzyme to exhibit ß-1,4 xylosidase, α-1,5 arabinofur(pyr)anosidase, ß-1,4 lactase, α-1,6 raffinase, α-1,6 stachyase, ß-galactosidase and α-1,4 glucosidase activities. The R_09-02 protein appears to originate from the chromosome of a member of Clostridia, a class of phylum Firmicutes, members of which are highly abundant in ruminal environment. The evolution of R_09-02 is suggested to be driven from the xylose- and arabinose-specific activities, typical for GHF43 members, toward a broader specificity to the glucose- and galactose-containing components of lignocellulose. The apparent capability of enzymes from the GHF43 family to utilise xylose-, arabinose-, glucose- and galactose-containing oligosaccharides has thus far been neglected by, or could not be predicted from, genome and metagenome sequencing data analyses. Taking into account the abundance of GHF43-encoding gene sequences in the rumen (up to 7% of all GH-genes) and the multifunctional phenotype herein described, our findings suggest that the ecological role of this GH family in the digestion of ligno-cellulosic matter should be significantly reconsidered.


Assuntos
Glicosídeo Hidrolases/genética , Lignina/metabolismo , Metagenômica , Plantas/metabolismo , Polímeros/metabolismo , Rúmen/enzimologia , Animais , Bovinos , Feminino , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Filogenia , Conformação Proteica
14.
Environ Microbiol ; 13(11): 3036-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21923856

RESUMO

Metagenomics is an emerging field for mining the bioresources for new biomolecules for potential application in biotechnology and biomedicine. In the present study, a novel acetylhydrolase (Est13) was detected during the function-based screening of a metagenomic library established from the DNA extracted from the cellulose-depleting microbial community set up with an earthworm cast. Analysis showed that Est13 exhibited some similarities with a human and parasite platelet-activating factor acetylhydrolase (PAF-AH) belonging to the SGNH hydrolase superfamily. Biochemical characterization of the purified recombinant enzyme using substrates common for hydrolases of this superfamily demonstrated that Est13 hydrolysed p-nitrophenyl acetate quite efficiently, with a k(cat) /K(M) value of 3209 mM(-1) s(-1). The Est13 showed highest activity at pH 8.0 and 40°C, conditions in which it is relatively stable compared with known PAF-AHs. In vitro functional analysis of the platelet-activating factor hydrolysis showed a dose- and time-dependent inhibition of platelet aggregation in the range of 2-4 µM, making this enzyme a potential candidate for biomedical applications.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Metagenoma , Oligoquetos/microbiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Genômica , Humanos , Hidrólise , Dados de Sequência Molecular , Agregação Plaquetária , Análise de Sequência de DNA , Especificidade por Substrato
15.
Appl Environ Microbiol ; 76(17): 5934-46, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20622123

RESUMO

The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-beta-glucanases, beta-glucosidases, beta-cellobiohydrolases, beta-galactosidase, and beta-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of beta-galactosidases/alpha-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales).


Assuntos
Bactérias/enzimologia , Biota , Celulose/metabolismo , Variação Genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligoquetos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Fezes/microbiologia , Biblioteca Gênica , Glicosídeo Hidrolases/classificação , Metagenoma , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
16.
Microb Ecol ; 59(3): 574-87, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19888626

RESUMO

Earthworms ingest large amounts of soil and have the potential to radically alter the biomass, activity, and structure of the soil microbial community. In this study, the diversity of eight bacterial groups from fresh soil, gut, and casts of the earthworms Lumbricus terrestris and Aporrectodea caliginosa were studied by single-strand conformation polymorphism (SSCP) analysis using both newly designed 16S rRNA gene-specific primer sets targeting Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Firmicutes and a conventional universal primer set for SSCP, with RNA and DNA as templates. In parallel, the study of the relative abundance of these taxonomic groups in the same samples was performed using fluorescence in situ hybridization. Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria were predominant in communities from the soil and worm cast samples. Representatives of classes Flavobacteria and Sphingobacteria (Bacteroidetes) and Pseudomonas spp. (low-abundant Gammaproteobacteria) were detected in soil and worm cast samples with conventional and taxon-targeting SSCP and through the sequence analysis of 16S rRNA clone libraries. Physiologically active unclassified Sphingomonadaceae (Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria) also maintained their diversities during transit through the earthworm intestine and were found on taxon-targeting SSCP profiles from the soil and worm cast samples. In conclusion, our results suggest that some specific bacterial taxonomic groups maintain their diversity and even increase their relative numbers during transit through the gastrointestinal tract of earthworms.


Assuntos
Bactérias/genética , Trato Gastrointestinal/microbiologia , Oligoquetos/microbiologia , Microbiologia do Solo , Animais , Bactérias/classificação , Primers do DNA , DNA Bacteriano/genética , Biblioteca Gênica , Hibridização in Situ Fluorescente , Oligoquetos/fisiologia , Filogenia , Polimorfismo Conformacional de Fita Simples , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise
17.
Microb Biotechnol ; 3(1): 48-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21255305

RESUMO

Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(k(cat)/K(m))](CE)/[(k(cat)/K(m))](FAE) factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys(281), Asp(282), Asn(316) and Lys(317)) situated close to the catalytic core (Ser(143)/Asp(273)/His(305)) and a deletion of a 34-AA-long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in k(cat)/K(m) values) and enzymes with inverted specificity ((k(cat)/K(m))(CE)/(k(cat)/K(m))(FAE) ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to -5.6 J mol(-1)), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to -13.7 J mol(-1)) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of 'hot spot' mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction.


Assuntos
Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Metagenoma , Oligoquetos/enzimologia , Substituição de Aminoácidos/genética , Animais , Evolução Molecular Direcionada , Trato Gastrointestinal/enzimologia , Cinética , Mutagênese , Oligoquetos/genética , Especificidade por Substrato
18.
Environ Microbiol ; 11(4): 1016-26, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19396950

RESUMO

Molecular signatures of new, as yet uncultured mollicute-like organisms (MLOs) have been detected in total rRNA and DNA extracted from tissues, gut contents and casts of four species of the earthworm family Lumbricidae. The MLO 16S rRNA sequences exhibited low identity to those of known Mollicutes species and formed a monophyletic cluster distantly affiliated to the 'Candidatus Bacilloplasma' (84.9%) and almost equidistant to the other main phylogenetic group of Mollicutes (< 79.8%) and the classes Bacilli (< 79.5%) and Clostridia (< 76.1%). SSCP profiling and sequence analysis of bands and bacterial clones derived from the earthworms and substrata revealed high phylogenetic relatedness of MLOs in earthworms from different geographic locations (Russia and Germany), with no obvious host species specificity being observed. Fluorescence in situ hybridization (FISH) analysis with a nucleotide probe specific for the new MLO group localized them to the coelomic fluids of earthworms. A new taxonomic group within the Mollicutes, designated 'Candidatus Lumbricincola', is proposed to include these as yet uncultured organisms.


Assuntos
Oligoquetos/microbiologia , Tenericutes/classificação , Tenericutes/isolamento & purificação , Animais , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Alemanha , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...