Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 325, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652915

RESUMO

Cell Penetrating Peptides (CPPs) are promising anticancer and antimicrobial drugs. We recently reported that a peptide derived from the human mitochondrial/ER membrane-anchored NEET protein, Nutrient Autophagy Factor 1 (NAF-1; NAF-144-67), selectively permeates and kills human metastatic epithelial breast cancer cells (MDA-MB-231), but not control epithelial cells. As cancer cells alter their phenotype during growth and metastasis, we tested whether NAF-144-67 would also be efficient in killing other human epithelial breast cancer cells that may have a different phenotype. Here we report that NAF-144-67 is efficient in killing BT-549, Hs 578T, MDA-MB-436, and MDA-MB-453 breast cancer cells, but that MDA-MB-157 cells are resistant to it. Upon closer examination, we found that MDA-MB-157 cells display a high content of intracellular vesicles and cellular protrusions, compared to MDA-MB-231 cells, that could protect them from NAF-144-67. Inhibiting the formation of intracellular vesicles and dynamics of cellular protrusions of MDA-MB-157 cells, using a protein translation inhibitor (the antibiotic Cycloheximide), rendered these cells highly susceptible to NAF-144-67, suggesting that under certain conditions, the killing effect of CPPs could be augmented when they are applied in combination with an antibiotic or chemotherapy agent. These findings could prove important for the treatment of metastatic cancers with CPPs and/or treatment combinations that include CPPs.

2.
bioRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398338

RESUMO

Mitochondria play a central role in muscle metabolism and function. In skeletal muscles, a unique family of iron-sulfur proteins, termed CISD proteins, support mitochondrial function. The abundance of these proteins declines with aging leading to muscle degeneration. Although the function of the outer mitochondrial proteins CISD1 and CISD2 has been defined, the role of the inner mitochondrial protein CISD3, is currently unknown. Here we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne Muscular Dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscle mitochondria, and that CISD3 interacts with, and donates its clusters to, Complex I respiratory chain subunit NDUFV2. These findings reveal that CISD3 is important for supporting the biogenesis and function of Complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact muscle degeneration syndromes, aging, and related conditions.

3.
J Phys Chem Lett ; 14(28): 6349-6354, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418426

RESUMO

Passive permeation of small molecules into vesicles with multiple compartments is a critical event in many chemical and biological processes. We consider the translocation of the peptide NAF-144-67 labeled with a fluorescent fluorescein dye across membranes of rhodamine-labeled 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) into liposomes with internal vesicles. Time-resolved microscopy revealed a sequential absorbance of the peptide in both the outer and inner micrometer vesicles that developed over a time period of minutes to hours, illustrating the spatial and temporal progress of the permeation. There is minimal perturbation of the membrane structure and no evidence for pore formation. On the basis of molecular dynamics simulations of NAF-144-67, we extended a local defect model to migration processes that include multiple compartments. The model captures the long residence time of the peptide within the membrane and the rate of permeation through the liposome and its internal compartments. Imaging experiments confirm the semi-quantitative description of the permeation of the model by activated diffusion and open the way for studies of more complex systems.


Assuntos
Lipossomos , Fosfolipídeos , Fosfolipídeos/química , Lipossomos/química , Fenômenos Químicos , Corantes Fluorescentes/química , Peptídeos , Bicamadas Lipídicas/química , Fosfatidilcolinas/química
4.
Phys Chem Chem Phys ; 25(20): 13819-13824, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184538

RESUMO

Structure-based drug design protocols may encounter difficulties to investigate poses when the biomolecular targets do not exhibit typical binding pockets. In this study, by providing two concrete examples from our labs, we suggest that the combination of metadynamics free energy methods (validated against affinity measurements), along with experimental structural information (by X-ray crystallography and NMR), can help to identify the poses of ligands on protein surfaces. The simulation workflow proposed here was implemented in a widely used code, namely GROMACS, and it could straightforwardly be applied to various drug-design campaigns targeting ligands' binding to protein surfaces.


Assuntos
Desenho de Fármacos , Proteínas de Membrana , Simulação por Computador , Fenômenos Biofísicos , Ligantes , Ligação Proteica , Simulação de Dinâmica Molecular , Sítios de Ligação
5.
J Chem Inf Model ; 63(2): 643-654, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36623826

RESUMO

Human NEET proteins contain two [2Fe-2S] iron-sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding of ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here, we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of the 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra contacts are of course absent in the solution; therefore, the X-ray pose is only transient in our calculations, where the binding free energy correlates with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in an area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Ferro-Enxofre , Neoplasias , Humanos , Proteínas Ferro-Enxofre/química , Ligantes , Proteínas Mitocondriais/metabolismo , Oxirredução
6.
ACS Appl Mater Interfaces ; 14(50): 55365-55375, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475576

RESUMO

Aptamer-functionalized Ce4+-ion-modified C-dots act as catalytic hybrid systems, aptananozymes, catalyzing the H2O2 oxidation of dopamine. A series of aptananozymes functionalized with different configurations of the dopamine binding aptamer, DBA, are introduced. All aptananozymes reveal substantially enhanced catalytic activities as compared to the separated Ce4+-ion-modified C-dots and aptamer constituents, and structure-catalytic functions between the structure and binding modes of the aptamers linked to the C-dots are demonstrated. The enhanced catalytic functions of the aptananozymes are attributed to the aptamer-induced concentration of the reaction substrates in spatial proximity to the Ce4+-ion-modified C-dots catalytic sites. The oxidation processes driven by the Ce4+-ion-modified C-dots involve the formation of reactive oxygen species (•OH radicals). Accordingly, Ce4+-ion-modified C-dots with the AS1411 aptamer or MUC1 aptamer, recognizing specific biomarkers associated with cancer cells, are employed as targeted catalytic agents for chemodynamic treatment of cancer cells. Treatment of MDA-MB-231 breast cancer cells and MCF-10A epithelial breast cells, as control, with the AS1411 aptamer- or MUC1 aptamer-modified Ce4+-ion-modified C-dots reveals selective cytotoxicity toward the cancer cells. In vivo experiments reveal that the aptamer-functionalized nanoparticles inhibit MDA-MB-231 tumor growth.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias da Mama , Humanos , Feminino , Dopamina/uso terapêutico , Peroxidase , Peróxido de Hidrogênio , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Peroxidases
7.
J Phys Chem B ; 126(46): 9559-9565, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36374279

RESUMO

Human NEET proteins play an important role in a variety of diseases, including cancer. Using the recently published X-ray structure of the human mNT-M1 complex, we screened a commercial chemical compound library and identified a new human mitoNEET (mNT) binding ligand (NTS-01). Biochemical investigations revealed that NTS-01 specifically binds to the human mNT protein and stabilizes its [2Fe-2S] clusters under oxidative conditions in vitro. Treatment of ovarian cancer cells with NTS-01 induces ovarian cancer (SKOV-3) mitochondrial fragmentation (fission) and reduces ovarian cancer cell proliferation in a 2D single-layer cell culture, as well as in a 3D-spheroids culture. The NTS-01 molecule represents therefore a new lead compound for further drug design studies attempting to develop efficient treatment against ovarian cancer.


Assuntos
Proteínas Ferro-Enxofre , Neoplasias Ovarianas , Humanos , Feminino , Proteínas Ferro-Enxofre/química , Ligantes , Detecção Precoce de Câncer , Proteínas Mitocondriais/química , Proliferação de Células , Neoplasias Ovarianas/tratamento farmacológico
8.
Small ; 18(52): e2204108, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351764

RESUMO

The assembly of adenosine triphosphate (ATP)-responsive and miRNA-responsive DNA tetrahedra-functionalized carboxymethyl cellulose hydrogel microcapsules is presented. The microcapsules are loaded with the doxorubicin-dextran drug or with CdSe/ZnS quantum dots as a drug model. Selective unlocking of the respective microcapsules and the release of the loads in the presence of ATP or miRNA-141 are demonstrated. Functionalization of the hydrogel microcapsules a with corona of DNA tetrahedra nanostructures yields microcarriers that revealed superior permeation into cells. This is demonstrated by the effective permeation of the DNA tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to epithelial MCF-10A nonmalignant breast cells. The superior permeation of the tetrahedra-functionalized microcapsules into MDA-MB-231 breast cancer cells, as compared to analog control hydrogel microcapsules modified with a corona of nucleic acid duplexes. The effective permeation of the stimuli-responsive, drug-loaded, DNA tetrahedra-modified microcapsules yields drug carriers of superior and selective cytotoxicity toward cancer cells.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Hidrogéis , Cápsulas/química , Portadores de Fármacos/química , Trifosfato de Adenosina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , DNA/química , Liberação Controlada de Fármacos
9.
ACS Nano ; 16(11): 18232-18243, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286233

RESUMO

Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro/química , Nanopartículas Metálicas/química , Dopamina/química , Peróxido de Hidrogênio , Catálise , Glucose , Reatores Biológicos
10.
Chem Sci ; 13(35): 10555-10565, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277654

RESUMO

Topological barriers control in nature the transcription machinery, thereby perturbing gene expression. Here we introduce synthetically designed DNA templates that include built-in topological barriers for switchable, triggered-controlled transcription of RNA aptamers. This is exemplified with the design of transcription templates that include reversible and switchable topological barriers consisting of a Sr2+-ion-stabilized G-quadruplex and its separation by kryptofix [2.2.2], KP, for the switchable transcription of the malachite green (MG) RNA aptamer, the T-A·T triplex barrier being separated by a fuel-strand for the cyclic triggered transcription of the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding aptamer, and the use of a photoactivated cis/trans azobenzene-modified nucleic acid barrier for the switchable "ON"/"OFF" transcription of the MG RNA aptamer. By applying a mixture of topologically triggered templates consisting of the photoresponsive barrier and the T-A·T triplex barrier, the gated transcription of the MG aptamer or the DFHBI-binding aptamer is demonstrated. In addition, a Sr2+-ion/KP topologically triggered DNA tetrahedra promoter-transcription scaffold, for the replication of the MG RNA aptamer, and T7 RNA polymerase are integrated into DNA-based carboxymethyl cellulose hydrogel microcapsules acting as cell-like assemblies. The switchable, reversible transcription of the MG RNA aptamer in a cell-like containment is introduced.

11.
Antioxidants (Basel) ; 11(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36009251

RESUMO

NEET proteins are conserved 2Fe-2S proteins that regulate the levels of iron and reactive oxygen species in plant and mammalian cells. Previous studies of seedlings with constitutive expression of AtNEET, or its dominant-negative variant H89C (impaired in 2Fe-2S cluster transfer), revealed that disrupting AtNEET function causes oxidative stress, chloroplast iron overload, activation of iron-deficiency responses, and cell death. Because disrupting AtNEET function is deleterious to plants, we developed an inducible expression system to study AtNEET function in mature plants using a time-course proteomics approach. Here, we report that the suppression of AtNEET cluster transfer function results in drastic changes in the expression of different members of the ferredoxin (Fd), Fd-thioredoxin (TRX) reductase (FTR), and TRX network of Arabidopsis, as well as in cytosolic cluster assembly proteins. In addition, the expression of Yellow Stripe-Like 6 (YSL6), involved in iron export from chloroplasts was elevated. Taken together, our findings reveal new roles for AtNEET in supporting the Fd-TFR-TRX network of plants, iron mobilization from the chloroplast, and cytosolic 2Fe-2S cluster assembly. In addition, we show that the AtNEET function is linked to the expression of glutathione peroxidases (GPXs), which play a key role in the regulation of ferroptosis and redox balance in different organisms.

12.
Chem Sci ; 13(25): 7437-7448, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872834

RESUMO

Biomolecule-loaded nucleic acid-functionalized carboxymethyl cellulose hydrogel-stabilized microcapsules (diameter ca. 2 µm) are introduced as cell-like containments. The microcapsules are loaded with two DNA tetrahedra, T1 and T2, functionalized with guanosine-rich G-quadruplex subunits, and/or with native enzymes (glucose oxidase, GOx, and/or ß-galactosidase, ß-gal). In the presence of K+-ions and hemin, the T1/T2 tetrahedra constituents, loaded in the microcapsules, assemble into a hemin/G-quadruplex bridged tetrahedra dimer DNAzyme catalyzing the oxidation of Amplex Red to Resorufin by generating H2O2. In the presence of co-loaded GOx or GOx/ß-gal, the GOx//T1/T2 hemin/G-quadruplex cascade catalyzing the glucose-mediated oxidation of Amplex Red to Resorufin, and the three-biocatalysts cascade consisting of ß-gal//GOx//hemin/G-quadruplex bridged T1/T2 catalyzing the lactose-driven oxidation of Amplex Red to Resorufin proceed in the microcapsules. Enhanced biocatalytic transformations in the microcapsules, as compared to the performance of the reactions in a homogeneous phase, are observed, due to the proximity of the biocatalysts in a confined volume. As the synthetic methodology to prepare the microcapsules yields boundaries functionalized with complementary nucleic acid tethers, the dynamic association of different microcapsules, loaded selectively with biomolecular catalysts, proceeds. The dynamic dimerization of GOx-loaded microcapsules and hemin/G-quadruplex bridged T1/T2 DNAzyme-loaded microcapsules yields effective intercommunicated microcapsules driving the GOx//hemin/G-quadruplex bridged T1/T2 DNAzyme cascade. In addition, the dynamic dimerization of GOx-loaded microcapsules with ß-gal//hemin/G-quadruplex bridged T1/T2-loaded microcapsules enables the bi-directional intercommunicated operation of the lactose-stimulated three catalysts ß-gal//GOx//hemin/G-quadruplex bridged T1/T2 DNAzyme cascade. The guided separation and formation of dynamic supramolecular dimer microcapsular containments, and the dictated switchable operation of intercommunicated biocatalytic cascades are demonstrated.

13.
Chem Sci ; 13(23): 6929-6941, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774163

RESUMO

An effective anti-cancer therapy should exclusively target cancer cells and trigger in them a broad spectrum of cell death pathways that will prevent avoidance. Here, we present a new approach in cancer therapy that specifically targets the mitochondria and ER of cancer cells. We developed a peptide derived from the flexible and transmembrane domains of the human protein NAF-1/CISD2. This peptide (NAF-144-67) specifically permeates through the plasma membranes of human epithelial breast cancer cells, abolishes their mitochondria and ER, and triggers cell death with characteristics of apoptosis, ferroptosis and necroptosis. In vivo analysis revealed that the peptide significantly decreases tumor growth in mice carrying xenograft human tumors. Computational simulations of cancer vs. normal cell membranes reveal that the specificity of the peptide to cancer cells is due to its selective recognition of their membrane composition. NAF-144-67 represents a promising anti-cancer lead compound that acts via a unique mechanism.

14.
Commun Biol ; 5(1): 437, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538231

RESUMO

Elevated levels of mitochondrial iron and reactive oxygen species (ROS) accompany the progression of diabetes, negatively impacting insulin production and secretion from pancreatic cells. In search for a tool to reduce mitochondrial iron and ROS levels, we arrived at a molecule that destabilizes the [2Fe-2S] clusters of NEET proteins (M1). Treatment of db/db diabetic mice with M1 improved hyperglycemia, without the weight gain observed with alternative treatments such as rosiglitazone. The molecular interactions of M1 with the NEET proteins mNT and NAF-1 were determined by X-crystallography. The possibility of controlling diabetes by molecules that destabilize the [2Fe-2S] clusters of NEET proteins, thereby reducing iron-mediated oxidative stress, opens a new route for managing metabolic aberration such as in diabetes.


Assuntos
Diabetes Mellitus Experimental , Proteínas Ferro-Enxofre , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Camundongos , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Phys Chem B ; 126(15): 2834-2849, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35388695

RESUMO

Cell-penetrating peptides (CPPs) facilitate translocation across biological membranes and are of significant biological and medical interest. Several CPPs can permeate into specific cells and organelles. We examine the incorporation and translocation of a novel anticancer CPP in a dioleoylphosphatidylcholine (DOPC) lipid bilayer membrane. The peptide, NAF-144-67, is a short fragment of a transmembrane protein, consisting of hydrophobic N-terminal and charged C-terminal segments. Experiments using fluorescently labeled NAF-144-67 in ∼100 nm DOPC vesicles and atomically detailed simulations conducted with Milestoning support a model in which a significant barrier for peptide-membrane entry is found at the interface between the aqueous solution and membrane. The initial step is the insertion of the N-terminal segment and the hydrophobic helix into the membrane, passing the hydrophilic head groups. Both experiments and simulations suggest that the free energy difference in the first step of the permeation mechanism in which the hydrophobic helix crosses the phospholipid head groups is -0.4 kcal mol-1 slightly favoring motion into the membrane. Milestoning calculations of the mean first passage time and the committor function underscore the existence of an early polar barrier followed by a diffusive barrierless motion in the lipid tail region. Permeation events are coupled to membrane fluctuations that are examined in detail. Our study opens the way to investigate in atomistic resolution the molecular mechanism, kinetics, and thermodynamics of CPP permeation to diverse membranes.


Assuntos
Peptídeos Penetradores de Células , Fosforilcolina , Peptídeos Penetradores de Células/química , Cinética , Bicamadas Lipídicas/química , Termodinâmica
16.
J Am Chem Soc ; 144(14): 6311-6320, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353520

RESUMO

Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Catálise , DNA de Cadeia Simples , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química
17.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135884

RESUMO

Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron-sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron-sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT-VDAC1-mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.


Assuntos
Citosol/metabolismo , Compostos Ferrosos/metabolismo , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Simulação por Computador , Matriz Extracelular , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Nus , Neoplasias Experimentais , Consumo de Oxigênio , Canal de Ânion 1 Dependente de Voltagem/genética
18.
ACS Nano ; 16(2): 1791-1801, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35020370

RESUMO

An analytical platform for the selective miRNA-21-guided imaging of breast cancer cells and miRNA-221-guided imaging of ovarian cancer cells and the selective photodynamic therapy (PDT) of these cancer cells is introduced. The method is based on Zn(II)-protoporphyrin IX, Zn(II)-PPIX-loaded UiO-66 metal-organic framework nanoparticles, NMOFs, gated by two hairpins Hi/Hj through ligation of their phosphate residues to the vacant Zr4+-ions associated with the NMOFs. The hairpins are engineered to include the miRNA recognition sequence in the stem domain of Hi, and in the Hi and Hj, partial locked stem regions of G-quadruplex subunits. Intracellular phosphate-ions displace the hairpins, resulting in the release of the Zn(II)-PPIX and intracellular miRNAs open Hi, and this triggers the autonomous cross-opening of Hi and Hj. This activates the interhairpin hybridization chain reaction and leads to the assembly of highly fluorescent Zn(II)-PPIX-loaded G-quadruplex chains. The miRNA-guided fluorescent chains allow selective imaging of cancer cells. Moreover, PDT with visible light selectively kills cancer cells and tumor cells through the formation of toxic reactive oxygen species.


Assuntos
Estruturas Metalorgânicas , MicroRNAs , Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , MicroRNAs/genética , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Ácidos Ftálicos , Protoporfirinas/química , Zinco
19.
FEBS Lett ; 596(6): 747-761, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997963

RESUMO

Considered a key aging gene, CISD2, encoding CDGSH iron-sulfur domain-containing protein 2, plays a central role in regulating calcium homeostasis, preventing mitochondrial dysfunction, and the activation of autophagy and apoptosis in different cells. Here, we show that cardiomyocytes from CISD2-null mice accumulate high levels of iron and contain high levels of transferrin receptor and ferritin. Using proteomics and transmission electron microscopy, we further show that the lack of CISD2 induces several features of the aging process in young mice, but other features are not induced. Taken together, our findings suggest that CISD2 protects cardiomyocytes from overaccumulation of iron, which is common in aging hearts and can contribute to the pathogenesis of heart failure.


Assuntos
Ferro , Miócitos Cardíacos , Envelhecimento , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte , Ferro/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso
20.
J Exp Bot ; 73(1): 324-338, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34499172

RESUMO

Iron (Fe) is an essential micronutrient whose uptake is tightly regulated to prevent either deficiency or toxicity. Cadmium (Cd) is a non-essential element that induces both Fe deficiency and toxicity; however, the mechanisms behind these Fe/Cd-induced responses are still elusive. Here we explored Cd- and Fe-associated responses in wild-type Arabidopsis and in a mutant that overaccumulates Fe (opt3-2). Gene expression profiling revealed a large overlap between transcripts induced by Fe deficiency and Cd exposure. Interestingly, the use of opt3-2 allowed us to identify additional gene clusters originally induced by Cd in the wild type but repressed in the opt3-2 background. Based on the high levels of H2O2 found in opt3-2, we propose a model where reactive oxygen species prevent the induction of genes that are induced in the wild type by either Fe deficiency or Cd. Interestingly, a defined cluster of Fe-responsive genes was found to be insensitive to this negative feedback, suggesting that their induction by Cd is more likely to be the result of an impaired Fe sensing. Overall, our data suggest that Fe deficiency responses are governed by multiple inputs and that a hierarchical regulation of Fe homeostasis prevents the induction of specific networks when Fe and H2O2 levels are elevated.


Assuntos
Proteínas de Arabidopsis , Cádmio , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Ferro/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...