Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 28(1): 97-113, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706979

RESUMO

The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Condensados Biomoleculares/química , Grânulos de Ribonucleoproteínas Citoplasmáticas/química , Demência Frontotemporal/genética , Proteínas de Ligação a RNA/química , RNA/química , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Condensados Biomoleculares/metabolismo , Morte Celular/genética , Grânulos de Ribonucleoproteínas Citoplasmáticas/genética , Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Simulação de Dinâmica Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transição de Fase , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
2.
Nat Rev Neurol ; 15(5): 272-286, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30890779

RESUMO

Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.


Assuntos
Encéfalo/metabolismo , Doenças Neurodegenerativas/metabolismo , Biofísica , Humanos , Transição de Fase , Ribonucleoproteínas/metabolismo
3.
Immunity ; 43(4): 715-26, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488816

RESUMO

CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Candidíase Invasiva/imunologia , Receptores de Angiotensina/fisiologia , Receptores de Endotelina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Adjuvantes Imunológicos/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Candidíase Invasiva/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Genes Dominantes , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de Angiotensina/química , Receptores de Angiotensina/deficiência , Receptores de Endotelina/química , Receptores de Endotelina/deficiência , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/química , Ubiquitinação
4.
J Virol ; 86(15): 7988-8001, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623766

RESUMO

La Crosse virus (LACV) is a leading cause of pediatric encephalitis and aseptic meningitis in the midwestern and southern United States, where it is considered an emerging human pathogen. No specific therapies or vaccines are available for LACV or any other orthobunyaviruses. Inhibition of LACV entry into cells is a potential target for therapeutic intervention, but this approach is limited by our current knowledge of the entry process. Here, we determined that clathrin-mediated endocytosis is the primary mechanism of orthobunyavirus entry and identified key cellular factors in this process. First, we demonstrated that LACV colocalized with clathrin shortly after infection in HeLa cells; we then confirmed the functional requirement of dynamin- and clathrin-mediated endocytosis for orthobunyavirus entry using several independent assays and, importantly, extended these findings to primary neuronal cultures. We also determined that macropinocytosis and caveolar endocytosis, both established routes of virus entry, are not critical for cellular entry of LACV. Moreover, we demonstrated that LACV infection is dependent on Rab5, which plays an important regulatory role in early endosomes, but not on Rab7, which is associated with late endosomes. These findings provide the first description of bunyavirus entry into cells of the central nervous system, where infection can cause severe neurological disease, and will aid in the design and development of antivirals and therapeutics that may be useful in the treatment of LACV and, more broadly, arboviral infections of the central nervous system.


Assuntos
Clatrina/metabolismo , Encefalite da Califórnia/metabolismo , Endocitose , Endossomos/metabolismo , Vírus La Crosse/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Clatrina/genética , Cricetinae , Encefalite da Califórnia/tratamento farmacológico , Encefalite da Califórnia/genética , Endossomos/genética , Endossomos/virologia , Células HeLa , Humanos , Vírus La Crosse/genética , Células Vero , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
5.
Neuron ; 67(6): 936-52, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20869592

RESUMO

Spinobulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by expansion of a polyglutamine tract in the androgen receptor (AR). This mutation confers toxic function to AR through unknown mechanisms. Mutant AR toxicity requires binding of its hormone ligand, suggesting that pathogenesis involves ligand-induced changes in AR. However, whether toxicity is mediated by native AR function or a novel AR function is unknown. We systematically investigated events downstream of ligand-dependent AR activation in a Drosophila model of SBMA. We show that nuclear translocation of AR is necessary, but not sufficient, for toxicity and that DNA binding by AR is necessary for toxicity. Mutagenesis studies demonstrated that a functional AF-2 domain is essential for toxicity, a finding corroborated by a genetic screen that identified AF-2 interactors as dominant modifiers of degeneration. These findings indicate that SBMA pathogenesis is mediated by misappropriation of native protein function, a mechanism that may apply broadly to polyglutamine diseases.


Assuntos
Transtornos Musculares Atróficos/etiologia , Transtornos Musculares Atróficos/genética , Mutação/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Cegueira/genética , Cegueira/patologia , Linhagem Celular Transformada , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Olho/metabolismo , Olho/patologia , Feminino , Furilfuramida/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Larva/fisiologia , Locomoção/genética , Neurônios Motores/metabolismo , Transtornos Musculares Atróficos/patologia , Mutagênese/fisiologia , Junção Neuromuscular/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Análise de Componente Principal , Transporte Proteico/genética , Interferência de RNA/fisiologia , Receptores Androgênicos/química , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Estatísticas não Paramétricas , Transfecção/métodos , Expansão das Repetições de Trinucleotídeos , Tubulina (Proteína)/metabolismo
6.
J Neurosci Res ; 88(10): 2207-16, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20336775

RESUMO

Expanded polyglutamine tracts cause neurodegeneration through a toxic gain-of-function mechanism. Generation of inclusions is a common feature of polyglutamine diseases and other protein misfolding disorders. Inclusion formation is likely to be a defensive response of the cell to the presence of unfolded protein. Recently, the compound B2 has been shown to increase inclusion formation and decrease toxicity of polyglutamine-expanded huntingtin in cultured cells. We explored the effect of B2 on spinal and bulbar muscular atrophy (SBMA). SBMA is caused by expansion of polyglutamine in the androgen receptor (AR) and is characterized by the loss of motor neurons in the brainstem and spinal cord. We found that B2 increases the deposition of mutant AR into nuclear inclusions, without altering the ligand-induced aggregation, expression, or subcellular distribution of the mutant protein. The effect of B2 on inclusions was associated with a decrease in AR transactivation function. We show that B2 reduces mutant AR toxicity in cell and fly models of SBMA, further supporting the idea that accumulation of polyglutamine-expanded protein into inclusions is protective. Our findings suggest B2 as a novel approach to therapy for SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/tratamento farmacológico , Atrofia Bulboespinal Ligada ao X/metabolismo , Fármacos Neuroprotetores/farmacologia , Nitroquinolinas/farmacologia , Peptídeos/metabolismo , Piperazinas/farmacologia , Receptores Androgênicos/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Corpos de Inclusão Intranuclear/metabolismo , Ligantes , Mutação , Multimerização Proteica , Ratos , Receptores Androgênicos/genética
7.
Biochim Biophys Acta ; 1782(12): 691-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18930136

RESUMO

Protein degradation is an essential cellular function that, when dysregulated or impaired, can lead to a wide variety of disease states. The two major intracellular protein degradation systems are the ubiquitin-proteasome system (UPS) and autophagy, a catabolic process that involves delivery of cellular components to the lysosome for degradation. While the UPS has garnered much attention as it relates to neurodegenerative disease, important links between autophagy and neurodegeneration have also become evident. Furthermore, recent studies have revealed interaction between the UPS and autophagy, suggesting a coordinated and complementary relationship between these degradation systems that becomes critical in times of cellular stress. Here we describe autophagy and review evidence implicating this system as an important player in the pathogenesis of neurodegenerative disease. We discuss the role of autophagy in neurodegeneration and review its neuroprotective functions as revealed by experimental manipulation in disease models. Finally, we explore potential parallels and connections between autophagy and the UPS, highlighting their collaborative roles in protecting against neurodegenerative disease.


Assuntos
Autofagia/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/terapia
8.
Nature ; 447(7146): 859-63, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17568747

RESUMO

A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona Desacetilases/metabolismo , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Desacetilase 6 de Histona , Humanos , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...