Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473659

RESUMO

The effect of oxygen reduction on the magnetic properties of LaFeO3-δ (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on as-received SrTiO3 (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures. In a LFO film grown on annealed STO, the LFO lost significantly more oxygen and the microstructure decomposed into La- and Fe-rich regions with remnant magnetization that persisted up to room temperature. These results demonstrate an ability to access multiple, distinct magnetic states via oxygen reduction in the same starting material and suggest LFO may be a suitable materials platform for nonvolatile multistate memory.

2.
Adv Mater ; 35(31): e2209866, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37120799

RESUMO

Non-collinear antiferromagnets (AFMs) are an exciting new platform for studying intrinsic spin Hall effects (SHEs), phenomena that arise from the materials' band structure, Berry phase curvature, and linear response to an external electric field. In contrast to conventional SHE materials, symmetry analysis of non-collinear antiferromagnets does not forbid non-zero longitudinal and out-of-plane spin currents with x ̂ , z ̂ $\hat{x},\hat{z}$ polarization and predicts an anisotropy with current orientation to the magnetic lattice. Here, multi-component out-of-plane spin Hall conductivities σ xz x , $\sigma _{{\rm{xz}}}^{\rm{x}},$ σ xz y , σ xz z $\sigma _{{\rm{xz}}}^{\rm{y}},\ \sigma _{{\rm{xz}}}^{\rm{z}}$ are reported in L12 -ordered antiferromagnetic PtMn3 thin films that are uniquely generated in the non-collinear state. The maximum spin torque efficiencies (ξ  = JS  /Je  ≈ 0.3) are significantly larger than in Pt (ξ  ≈  0.1). Additionally, the spin Hall conductivities in the non-collinear state exhibit the predicted orientation-dependent anisotropy, opening the possibility for new devices with selectable spin polarization. This work demonstrates symmetry control through the magnetic lattice as a pathway to tailored functionality in magnetoelectronic systems.

3.
Adv Mater ; 33(4): e2001324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33314400

RESUMO

Low-dimensional quantum materials that remain strongly ferromagnetic down to monolayer thickness are highly desired for spintronic applications. Although oxide materials are important candidates for the next generation of spintronics, ferromagnetism decays severely when the thickness is scaled to the nanometer regime, leading to deterioration of device performance. Here, a methodology is reported for maintaining strong ferromagnetism in insulating LaCoO3 (LCO) layers down to the thickness of a single unit cell. It is found that the magnetic and electronic states of LCO are linked intimately to the structural parameters of adjacent "breathing lattice" SrCuO2 (SCO). As the dimensionality of SCO is reduced, the lattice constant elongates over 10% along the growth direction, leading to a significant distortion of the CoO6 octahedra, and promoting a higher spin state and long-range spin ordering. For atomically thin LCO layers, surprisingly large magnetic moment (0.5 µB /Co) and Curie temperature (75 K), values larger than previously reported for any monolayer oxides are observed. The results demonstrate a strategy for creating ultrathin ferromagnetic oxides by exploiting atomic heterointerface engineering, confinement-driven structural transformation, and spin-lattice entanglement in strongly correlated materials.

4.
Sci Adv ; 6(35): eabc1977, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32923648

RESUMO

Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn3Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn3+x Sn1-x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.

5.
Phys Rev Mater ; 4(5)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34142004

RESUMO

We report on the evolution of the average and depth-dependent magnetic order in thin-film samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range < 0.1 to 7.8 × 1020 cm-3. Under an applied in-plane magnetic field, the G-type antiferromagnetic ground state undergoes a continuous spin-flop phase transition into in-plane, field-polarized ferromagnetism. The critical field for ferromagnetism slightly decreases with an increasing number of free carriers, yet the field evolution of the spin-flop transition is qualitatively similar across the doping range. Unexpectedly, we observe interfacial ferromagnetism with saturated Eu2+ moments at the substrate interface at low fields preceding ferromagnetic saturation throughout the bulk of the degenerate semiconductor film. We discuss the implications of these findings for the unusual magnetotransport properties of this compound.

6.
Nano Lett ; 18(9): 5875-5884, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30106301

RESUMO

Bismuth selenide (Bi2Se3) is a prototypical 3D topological insulator whose Dirac surface states have been extensively studied theoretically and experimentally. Surprisingly little, however, is known about the energetics and dynamics of electrons and holes within the bulk band structure of the semiconductor. We use mid-infrared femtosecond transient reflectance measurements on a single nanoflake to study the ultrafast thermalization and recombination dynamics of photoexcited electrons and holes within the extended bulk band structure over a wide energy range (0.3 to 1.2 eV). Theoretical modeling of the reflectivity spectral line shapes at 10 K demonstrates that the electrons and holes are photoexcited within a dense and cold electron gas with a Fermi level positioned well above the bottom of the lowest conduction band. Direct optical transitions from the first and the second spin-orbit split valence bands to the Fermi level above the lowest conduction band minimum are identified. The photoexcited carriers thermalize rapidly to the lattice temperature within a couple of picoseconds due to optical phonon emission and scattering with the cold electron gas. The minority carrier holes recombine with the dense electron gas within 150 ps at 10 K and 50 ps at 300 K. Such knowledge of interaction of electrons and holes within the bulk band structure provides a foundation for understanding how such states interact dynamically with the topologically protected Dirac surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...