Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309122

RESUMO

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Succinatos/farmacologia , Macrófagos/metabolismo
2.
Nat Commun ; 14(1): 4461, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491334

RESUMO

Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.


Assuntos
Monócitos , Infarto do Miocárdio , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Epigênese Genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
3.
J Am Coll Cardiol ; 81(13): 1263-1278, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990546

RESUMO

BACKGROUND: On-pump cardiac surgery triggers sterile inflammation and postoperative complications such as postoperative atrial fibrillation (POAF). Hematopoietic somatic mosaicism (HSM) is a recently identified risk factor for cardiovascular diseases and results in a shift toward a chronic proinflammatory monocyte transcriptome and phenotype. OBJECTIVES: The aim of this study was to assess the prevalence, characteristics, and impact of HSM on preoperative blood and myocardial myeloid cells as well as on outcomes after cardiac surgery. METHODS: Blood DNA from 104 patients referred for surgical aortic valve replacement (AVR) was genotyped using the HemePACT panel (576 genes). Four screening methods were applied to assess HSM, and postoperative outcomes were explored. In-depth blood and myocardial leukocyte phenotyping was performed in selected patients using mass cytometry and preoperative and postoperative RNA sequencing analysis of classical monocytes. RESULTS: The prevalence of HSM in the patient cohort ranged from 29%, when considering the conventional HSM panel (97 genes) with variant allelic frequencies ≥2%, to 60% when considering the full HemePACT panel and variant allelic frequencies ≥1%. Three of 4 explored HSM definitions were significantly associated with higher risk for POAF. On the basis of the most inclusive definition, HSM carriers exhibited a 3.5-fold higher risk for POAF (age-adjusted OR: 3.5; 95% CI: 1.52-8.03; P = 0.003) and an exaggerated inflammatory response following AVR. HSM carriers presented higher levels of activated CD64+CD14+CD16- circulating monocytes and inflammatory monocyte-derived macrophages in presurgery myocardium. CONCLUSIONS: HSM is frequent in candidates for AVR, is associated with an enrichment of proinflammatory cardiac monocyte-derived macrophages, and predisposes to a higher incidence of POAF. HSM assessment may be useful in the personalized management of patients in the perioperative period. (Post-Operative Myocardial Incident & Atrial Fibrillation [POMI-AF]; NCT03376165).


Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Humanos , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Mosaicismo , Valva Aórtica/cirurgia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/diagnóstico
4.
Cell Rep ; 41(8): 111703, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417856

RESUMO

Macrophages are critical immune cells in inflammatory diseases, and their differentiation and function are tightly regulated by histone modifications. H3K79 methylation is a histone modification associated with active gene expression, and DOT1L is the only histone methyltransferase for H3K79. Here we determine the role of DOT1L in macrophages by applying a selective DOT1L inhibitor in mouse and human macrophages and using myeloid-specific Dot1l-deficient mice. We found that DOT1L directly regulates macrophage function by controlling lipid biosynthesis gene programs including central lipid regulators like sterol regulatory element-binding proteins SREBP1 and SREBP2. DOT1L inhibition also leads to macrophage hyperactivation, which is associated with disrupted SREBP pathways. In vivo, myeloid Dot1l deficiency reduces atherosclerotic plaque stability and increases the activation of inflammatory plaque macrophages. Our data show that DOT1L is a crucial regulator of macrophage inflammatory responses and lipid regulatory pathways and suggest a high relevance of H3K79 methylation in inflammatory disease.


Assuntos
Histona-Lisina N-Metiltransferase , Placa Aterosclerótica , Humanos , Camundongos , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Lipídeos
5.
Front Cardiovasc Med ; 9: 829877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224060

RESUMO

Macrophages are critical components of atherosclerotic lesions and their pro- and anti-inflammatory responses influence atherogenesis. Type-I interferons (IFNs) are cytokines that play an essential role in antiviral responses and inflammatory activation and have been shown to promote atherosclerosis. Although the impact of type-I IFNs on macrophage foam cell formation is well-documented, the effect of lipid accumulation in monocytes and macrophages on type-I IFN responses remains unknown. Here we examined IFN stimulated (ISG) and non-ISG inflammatory gene expression in mouse and human macrophages that were loaded with acetylated LDL (acLDL), as a model for foam cell formation. We found that acLDL loading in mouse and human macrophages specifically suppressed expression of ISGs and IFN-ß secretion, but not other pro-inflammatory genes. The down regulation of ISGs could be rescued by exogenous IFN-ß supplementation. Activation of the cholesterol-sensing nuclear liver X receptor (LXR) recapitulated the cholesterol-initiated type-I IFN suppression. Additional analyses of murine in vitro and in vivo generated foam cells confirmed the suppressed IFN signaling pathways and suggest that this phenotype is mediated via down regulation of interferon regulatory factor binding at gene promoters. Finally, RNA-seq analysis of monocytes of familial hypercholesterolemia (FH) patients also showed type-I IFN suppression which was restored by lipid-lowering therapy and not present in monocytes of healthy donors. Taken together, we define type-I IFN suppression as an athero-protective characteristic of foamy macrophages. These data provide new insights into the mechanisms that control inflammatory responses in hyperlipidaemic settings and can support future therapeutic approaches focusing on reprogramming of macrophages to reduce atherosclerotic plaque progression and improve stability.

6.
J Immunol ; 207(2): 555-568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233910

RESUMO

As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.


Assuntos
Diferenciação Celular/fisiologia , Inflamação/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Psoríase/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fenótipo , Proteômica/métodos , Pele/metabolismo
7.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979301

RESUMO

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Assuntos
Anticorpos Antivirais/química , COVID-19/imunologia , Imunoglobulina G/química , Macrófagos Alveolares/imunologia , Glicosilação , Humanos , Inflamação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
8.
Nat Commun ; 11(1): 6296, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293558

RESUMO

Macrophages represent a major immune cell population in atherosclerotic plaques and play central role in the progression of this lipid-driven chronic inflammatory disease. Targeting immunometabolism is proposed as a strategy to revert aberrant macrophage activation to improve disease outcome. Here, we show ATP citrate lyase (Acly) to be activated in inflammatory macrophages and human atherosclerotic plaques. We demonstrate that myeloid Acly deficiency induces a stable plaque phenotype characterized by increased collagen deposition and fibrous cap thickness, along with a smaller necrotic core. In-depth functional, lipidomic, and transcriptional characterization indicate deregulated fatty acid and cholesterol biosynthesis and reduced liver X receptor activation within the macrophages in vitro. This results in macrophages that are more prone to undergo apoptosis, whilst maintaining their capacity to phagocytose apoptotic cells. Together, our results indicate that targeting macrophage metabolism improves atherosclerosis outcome and we reveal Acly as a promising therapeutic target to stabilize atherosclerotic plaques.


Assuntos
ATP Citrato (pro-S)-Liase/deficiência , Macrófagos/metabolismo , Placa Aterosclerótica/imunologia , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Idoso , Animais , Apoptose/imunologia , Colesterol/biossíntese , Colágeno/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/biossíntese , Feminino , Fibrose , Perfilação da Expressão Gênica , Humanos , Lipidômica , Lipogênese/imunologia , Receptores X do Fígado/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos Knockout , Necrose/imunologia , Necrose/patologia , Fagocitose , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia
9.
Curr Opin Lipidol ; 31(6): 324-330, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33027226

RESUMO

PURPOSE OF REVIEW: This review discusses the current developments on epigenetic inhibition as treatment for atherosclerosis. RECENT FINDINGS: The first phase III clinical trial targeting epigenetics in cardiovascular disease (CVD), BETonMACE, using the bromodomain inhibitor apabetalone (RVX-208) showed no significant effect on major adverse cardiovascular events (MACE) in patients with type II diabetes, low HDL-c and a recent acute coronary artery event compared with its placebo arm. SUMMARY: Preclinical and clinical studies suggest that targeting epigenetics in atherosclerosis is a promising novel therapeutic strategy against CVD. Interfering with histone acetylation by targeting histone deacetylates (HDACs) and bromodomain and extraterminal domain (BET) proteins demonstrated encouraging results in modulating disease progression in model systems. Although the first phase III clinical trial targeting BET in CVD showed no effect on MACE, we suggest that there is sufficient potential for future clinical usage based on the outcomes in specific subgroups and the fact that the study was slightly underpowered. Lastly, we propose that there is future window for targeting repressive histone modifications in atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/terapia , Epigênese Genética , Animais , Humanos
10.
Front Immunol ; 11: 594603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574814

RESUMO

Macrophages define a key component of immune cells present in atherosclerotic lesions and are central regulators of the disease. Since epigenetic processes are important in controlling macrophage function, interfering with epigenetic pathways in macrophages might be a novel approach to combat atherosclerosis. Histone H3K27 trimethylation is a repressive histone mark catalyzed by polycomb repressive complex with EZH2 as the catalytic subunit. EZH2 is described to increase macrophage inflammatory responses by supressing the suppressor of cytokine signaling, Socs3. We previously showed that myeloid deletion of Kdm6b, an enzymes that in contrast to EZH2 removes repressive histone H3K27me3 marks, results in advanced atherosclerosis. Because of its opposing function and importance of EZH2 in macrophage inflammatory responses, we here studied the role of myeloid EZH2 in atherosclerosis. A myeloid-specific Ezh2 deficient mouse strain (Ezh2del) was generated (LysM-cre+ x Ezh2fl/fl) and bone marrow from Ezh2del or Ezh2wt mice was transplanted to Ldlr-/- mice which were fed a high fat diet for 9 weeks to study atherosclerosis. Atherosclerotic lesion size was significantly decreased in Ezh2del transplanted mice compared to control. The percentage of macrophages in the atherosclerotic lesion was similar, however neutrophil numbers were lower in Ezh2del transplanted mice. Correspondingly, the migratory capacity of neutrophils was decreased in Ezh2del mice. Moreover, peritoneal Ezh2del foam cells showed a reduction in the inflammatory response with reduced production of nitric oxide, IL-6 and IL-12. In Conclusion, myeloid Ezh2 deficiency impairs neutrophil migration and reduces macrophage foam cell inflammatory responses, both contributing to reduced atherosclerosis.


Assuntos
Aterosclerose/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Células Espumosas/imunologia , Animais , Aterosclerose/genética , Aterosclerose/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Células Espumosas/patologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Knockout , Especificidade de Órgãos
11.
BMJ Open Diabetes Res Care ; 7(1): e000751, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798899

RESUMO

Introduction: Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. Research design and methods: Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. Results and conclusions: In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Imunidade Celular/fisiologia , Macrófagos Peritoneais/imunologia , Obesidade/imunologia , Redução de Peso/fisiologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Imunidade Celular/efeitos dos fármacos , Resistência à Insulina/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/patologia , Obesidade/terapia , Redução de Peso/imunologia
12.
Front Pharmacol ; 10: 1242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736752

RESUMO

Monocytes and macrophages are key drivers in the pathogenesis of inflammatory diseases. Epigenetic targets have been shown to control the transcriptional profile and phenotype of these cells. Since histone deacetylase protein inhibitors demonstrate profound anti-inflammatory activity, we wanted to test whether HDAC inhibition within monocytes and macrophages could be applied to suppress inflammation in vivo. ESM technology conjugates an esterase-sensitive motif (ESM) onto small molecules to allow targeting of cells that express carboxylesterase 1 (CES1), such as mononuclear myeloid cells. This study utilized an ESM-HDAC inhibitor to target monocytes and macrophages in mice in both an acute response model and an atherosclerosis model. We demonstrate that the molecule blocks the maturation of peritoneal macrophages and inhibits pro-inflammatory cytokine production in both models but to a lesser extent in the atherosclerosis model. Despite regulating the inflammatory response, ESM-HDAC528 did not significantly affect plaque size or phenotype, although histological classification of the plaques demonstrated a significant shift to a less severe phenotype. We hereby show that HDAC inhibition in myeloid cells impairs the maturation and activation of peritoneal macrophages but shows limited efficacy in a model of atherosclerosis.

13.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672939

RESUMO

Inflammation may play a role in the link between high salt intake and its deleterious consequences. However, it is unknown whether salt can induce proinflammatory priming of monocytes and macrophages in humans. We investigated the effects of salt on monocytes and macrophages in vitro and in vivo by performing a randomized crossover trial in which 11 healthy human subjects adhered to a 2-week low-salt and high-salt diet. We demonstrate that salt increases monocyte expression of CCR2, a chemokine receptor that mediates monocyte infiltration in inflammatory diseases. In line with this, we show a salt-induced increase of plasma MCP-1, transendothelial migration of monocytes, and skin macrophage density after high-salt diet. Macrophages demonstrate signs of an increased proinflammatory phenotype after salt exposure, as represented by boosted LPS-induced cytokine secretion of IL-6, TNF, and IL-10 in vitro, and by increased HLA-DR expression and decreased CD206 expression on skin macrophages after high-salt diet. Taken together, our data open up the possibility for inflammatory monocyte and macrophage responses as potential contributors to the deleterious effects of high salt intake.


Assuntos
Inflamação/metabolismo , Monócitos/efeitos dos fármacos , Receptores CCR2/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Adulto , Estudos Cross-Over , Citocinas/metabolismo , Feminino , Humanos , Masculino , Monócitos/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Adulto Jovem
14.
ACS Nano ; 13(12): 13759-13774, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31268670

RESUMO

Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.


Assuntos
Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/terapia , Progressão da Doença , Endotélio Vascular/patologia , Nanopartículas/química , Animais , Aterosclerose/patologia , Entropia , Európio/química , Camundongos , Probabilidade , Temperatura
15.
Epigenetics Chromatin ; 12(1): 34, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171035

RESUMO

BACKGROUND: Macrophages and their precursors monocytes play a key role in inflammation and chronic inflammatory disorders. Monocyte-to-macrophage differentiation and activation programs are accompanied by significant epigenetic remodeling where DNA methylation associates with cell identity. Here we show that DNA methylation changes characteristic for monocyte-to-macrophage differentiation occur at transcription factor binding sites, and, in contrast to what was previously described, are generally highly localized and encompass both losses and gains of DNA methylation. RESULTS: We compared genome-wide DNA methylation across 440,292 CpG sites between human monocytes, naïve macrophages and macrophages further activated toward a pro-inflammatory state (using LPS/IFNγ), an anti-inflammatory state (IL-4) or foam cells (oxLDL and acLDL). Moreover, we integrated these data with public whole-genome sequencing data on monocytes and macrophages to demarcate differentially methylated regions. Our analysis showed that differential DNA methylation was most pronounced during monocyte-to-macrophage differentiation, was typically restricted to single CpGs or very short regions, and co-localized with lineage-specific enhancers irrespective of whether it concerns gain or loss of methylation. Furthermore, differentially methylated CpGs were located at sites characterized by increased binding of transcription factors known to be involved in monocyte-to-macrophage differentiation including C/EBP and ETS for gain and AP-1 for loss of methylation. CONCLUSION: Our study highlights the involvement of subtle, yet highly localized remodeling of DNA methylation at regulatory regions in cell differentiation.


Assuntos
Metilação de DNA , Macrófagos/citologia , Monócitos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Sítios de Ligação , Diferenciação Celular/fisiologia , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/metabolismo , Masculino , Monócitos/metabolismo , Ligação Proteica , Sequenciamento Completo do Genoma
16.
Cell Rep ; 25(8): 2044-2052.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463003

RESUMO

Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function.


Assuntos
Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Via de Pentose Fosfato , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos
17.
Atherosclerosis ; 275: 156-165, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29908485

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is a lipid-driven chronic inflammatory disorder of the arteries, and monocytes and macrophages play a central role in this process. Within the atherosclerotic lesion, macrophages can scavenge modified lipids and become the so-called foam cells. We previously reported that the epigenetic enzyme Kdm6b (also known as Jmjd3) controls the pro-fibrotic transcriptional profile of peritoneal foam cells. Given the importance of these cells in atherosclerosis, we now studied the effect of myeloid Kdm6b on disease progression. METHODS: Bone marrow of myeloid Kdm6b deficient (Kdm6bdel) mice or wild type littermates (Kdm6bwt) was transplanted to lethally irradiated Ldlr-/- mice fed a high fat diet for 9 weeks to induce atherosclerosis. RESULTS: Lesion size was similar in Kdm6bwt and Kdm6bdel transplanted mice. However, lesions of Kdm6bdel mice contained more collagen and were more necrotic. Pathway analysis on peritoneal foam cells showed that the pathway involved in leukocyte chemotaxis was most significantly upregulated. Although macrophage and neutrophil content was similar after 9 weeks of high fat diet feeding, the relative increase in collagen content and necrosis revealed that atherosclerotic lesions in Kdm6bdel mice progress faster. CONCLUSION: Myeloid Kdm6b deficiency results in more advanced atherosclerosis.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Células Espumosas/enzimologia , Histona Desmetilases com o Domínio Jumonji/deficiência , Macrófagos Peritoneais/enzimologia , Placa Aterosclerótica , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Quimiotaxia de Leucócito , Colágeno/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Células Espumosas/patologia , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos Peritoneais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Infiltração de Neutrófilos , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo
18.
J Exp Med ; 215(5): 1269-1271, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29691302

RESUMO

In this issue of JEM, Zhang et al. (https://doi.org/10.1084/jem.20171417) show that the suppressive epigenetic enzyme Ezh2 is an important regulator of macrophage activation. The absence of Ezh2 leads to reduced cytokine secretion and suppresses macrophage-dependent disease development. They identify the antiinflammatory factor Socs3 as an important target for Ezh2 and thus show that regulation of suppressive histone modifications controls macrophage activation in disease.


Assuntos
Ativação de Macrófagos , Complexo Repressor Polycomb 2 , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Inflamação , Macrófagos , Proteína 3 Supressora da Sinalização de Citocinas
19.
J Am Heart Assoc ; 7(6)2018 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-29525783

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) decreases hepatic CETP (cholesteryl ester transfer protein) expression albeit that the underlying mechanism is disputed. We recently showed that plasma CETP is mainly derived from Kupffer cells (KCs). In this study, we investigated the role of KC subsets in the mechanism by which LPS reduces CETP expression. METHODS AND RESULTS: In CETP-transgenic mice, LPS markedly decreased hepatic CETP expression and plasma CETP concentration without affecting hepatic macrophage number. This was paralleled by decreased expression of the resting KC markers C-type lectin domain family 4, member f (Clec4f) and V-set and immunoglobulin domain containing 4 (Vsig4), while expression of the infiltrating monocyte marker lymphocyte antigen 6 complex locus C (Ly6C) was increased. Simultaneously, the ratio of plasma high-density lipoprotein-cholesterol over non-high-density lipoprotein-cholesterol transiently increased. After ablation hepatic macrophages via injection with liposomal clodronate, the reappearance of hepatic gene and protein expression of CETP coincided with Clec4f and Vsig4, but not Ly6C. Double-immunofluorescence staining showed that CETP co-localized with Clec4f+ KCs and not Ly6C+ monocytes. In humans, microarray gene-expression analysis of liver biopsies revealed that hepatic expression and plasma level of CETP both correlated with hepatic VSIG4 expression. LPS administration decreased the plasma CETP concentration in humans. In vitro experiments showed that LPS reduced liver X receptor-mediated CETP expression. CONCLUSIONS: Hepatic expression of CETP is exclusively confined to the resting KC subset (ie, F4/80+Clec4f+Vsig4+Ly6C-). LPS activated resting KCs, leading to reduction of Clec4f and Vsig4 expression and reduction of hepatic CETP expression, consequently decreasing plasma CETP and raising high-density lipoprotein (HDL)-cholesterol. This sequence of events is consistent with the anti-inflammatory role of HDL in the response to LPS and may be relevant as a defense mechanism against bacterial infections.


Assuntos
Antígenos Ly/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dislipidemias/metabolismo , Células de Kupffer/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Receptores de Complemento/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antígenos Ly/genética , Proteínas de Ligação ao Cálcio , Células Cultivadas , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/genética , Dislipidemias/patologia , Feminino , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Lectinas Tipo C/genética , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Transgênicos , Fenótipo , Receptores de Complemento/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
20.
Atherosclerosis ; 263: 377-384, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457624

RESUMO

BACKGROUND AND AIMS: The risk of developing cardiovascular disease (CVD) is twice as high among smoking individuals compared to non-smokers. Monocytes are involved in smoking-related atherosclerotic plaque formation. In this study, we investigated whether smokers with an increased risk of developing CVD can be identified on the basis of monocyte-derived miRNA expression levels. METHODS: We performed a miRNA microarray experiment on isolated monocytes from smoking, former smoking and non-smoking individuals in a cohort of patients with premature CVD and healthy controls (Cohort I, n = 76). RESULTS: We found miR-124-3p to be heterogeneously expressed among all smoking individuals, whereas expression was low in non-smokers. Subsequently, RT-qPCR measurements on whole blood showed that among smoking individuals an increase in miR-124-3p is associated with an increased risk for advanced atherosclerotic disease (cohort II, n = 24) (OR 11.72 95% CI 1.09-126.53) and subclinical atherosclerosis (coronary artery calcium score ≥ 80th percentile, cohort III n = 138) (OR 2.71, 95% CI 1.05-7.01). This was not observed among former smokers or non-smoking individuals. Flow cytometric analysis demonstrated that high miR-124-3p expression was associated with upregulation of the monocyte surface markers CD45RA, CD29 and CD206, indicating an altered monocyte phenotype. Finally, overexpression of miR-124-3p resulted in an upregulation of CD206 surface expression on monocytes. CONCLUSIONS: High miR-124-3p expression is associated with an increased risk of subclinical atherosclerosis in smoking individuals and with an altered monocyte phenotype. This may suggest that miR-124-3p identifies which smoking individuals are susceptible to the atherogenic effects of smoking.


Assuntos
Aterosclerose/genética , MicroRNAs/genética , Monócitos/metabolismo , Fumar/efeitos adversos , Fumar/genética , Adulto , Aterosclerose/sangue , Aterosclerose/diagnóstico , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Integrina beta1/sangue , Lectinas Tipo C/sangue , Antígenos Comuns de Leucócito/sangue , Modelos Logísticos , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/sangue , MicroRNAs/sangue , Pessoa de Meia-Idade , Razão de Chances , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Receptores de Superfície Celular/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Fumar/sangue , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...