Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 77, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030203

RESUMO

Evaporation control is a critical facility resource during solidification experiments that limits processing time and must be tracked to ensure facility health. A thermodynamic analysis was performed on a ternary FeCrNi sample processed onboard the International Space Station (ISS) using ESA Electromagnetic Levitation (EML) facility in a microgravity environment. A non-ideal solution-based mathematical model was applied for the overall sample mass loss prediction during this study. The overall sample mass loss prediction is consistent with the post-flight mass loss measurements. The species-specific findings from this study were validated using post-mission SEM-EDX surface evaluations by three different facilities. The bulk composition prediction was validated using SEM-EDX and wet chemical analysis. The non-ideal solution model was then applied to predict the composition of the dust generated during EML testing. The thicknesses of the deposited layer on the EML coil at various locations were also calculated using the geometry of the facility and results were validated with near-real-time dust layer predictions from toxicity tracking software developed by the German Space Center (DLR) Microgravity User Support Center (MUSC).

2.
Sci Rep ; 14(1): 10875, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740845

RESUMO

Three-dimensional information is essential for a proper understanding of the healing potential of the menisci and their overall role in the knee joint. However, to date, the study of meniscal vascularity has relied primarily on two-dimensional imaging techniques. Here we present a method to elucidate the intricate 3D meniscal vascular network, revealing its spatial arrangement, connectivity and density. A polymerizing contrast agent was injected into the femoral artery of human cadaver legs, and the meniscal microvasculature was examined using micro-computed tomography at different levels of detail and resolution. The 3D vascular network was quantitatively assessed in a zone-base analysis using parameters such as diameter, length, tortuosity, and branching patterns. The results of this study revealed distinct vascular patterns within the meniscus, with the highest vascular volume found in the outer perimeniscal zone. Variations in vascular parameters were found between the different circumferential and radial meniscal zones. Moreover, through state-of-the-art 3D visualization using micro-CT, this study highlighted the importance of spatial resolution in accurately characterizing the vascular network. These findings, both from this study and from future research using this technique, improve our understanding of microvascular distribution, which may lead to improved therapeutic strategies.


Assuntos
Imageamento Tridimensional , Microvasos , Microtomografia por Raio-X , Humanos , Imageamento Tridimensional/métodos , Microvasos/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/irrigação sanguínea , Menisco/diagnóstico por imagem , Masculino , Cadáver , Feminino
3.
J Control Release ; 368: 566-579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438093

RESUMO

Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.


Assuntos
Anemia Ferropriva , Maltose/análogos & derivados , Nanopartículas Metálicas , Humanos , Ferro/química , Espalhamento a Baixo Ângulo , Ligantes , Difração de Raios X , Compostos Férricos , Óxido de Ferro Sacarado/uso terapêutico , Anemia Ferropriva/tratamento farmacológico , Nanopartículas Metálicas/química , Fibrinogênio
4.
ACS Appl Mater Interfaces ; 16(10): 12353-12362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436097

RESUMO

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm-2 and 1 mAh cm-2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 µm thick, porous LLZO membranes with a small pore size of ca. 2.3 µm and an average porosity of 51%, resulting in a specific surface area of 1.3 µm-1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 µm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm-2.

5.
IEEE Trans Med Imaging ; 43(7): 2670-2678, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38437150

RESUMO

Histological analysis is the core of follicular thyroid carcinoma (FTC) classification. The histopathological criteria of capsular and vascular invasion define malignancy and aggressiveness of FTC. Analysis of multiple sections is cumbersome and as only a minute tissue fraction is analyzed during histopathology, under-sampling remains a problem. Application of an efficient tool for complete tissue imaging in 3D would speed-up diagnosis and increase accuracy. We show that X-ray propagation-based imaging (XPBI) of paraffin-embedded tissue blocks is a valuable complementary method for follicular thyroid carcinoma diagnosis and assessment. It enables a fast, non-destructive and accurate 3D virtual histology of the FTC resection specimen. We demonstrate that XPBI virtual slices can reliably evaluate capsular invasions. Then we discuss the accessible morphological information from XPBI and their significance for vascular invasion diagnosis. We show 3D morphological information that allow to discern vascular invasions. The results are validated by comparing XPBI images with clinically accepted histology slides revised by and under supervision of two experienced endocrine pathologists.


Assuntos
Adenocarcinoma Folicular , Imageamento Tridimensional , Neoplasias da Glândula Tireoide , Microtomografia por Raio-X , Humanos , Imageamento Tridimensional/métodos , Adenocarcinoma Folicular/diagnóstico por imagem , Adenocarcinoma Folicular/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Microtomografia por Raio-X/métodos , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/patologia
6.
Adv Sci (Weinh) ; 11(24): e2307921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477181

RESUMO

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.


Assuntos
Celulose , Impressão Tridimensional , Celulose/química , Camundongos , Animais , Células NIH 3T3 , Géis/química , Nanofibras/química , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA