Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2999-3002, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262265

RESUMO

This work reports a fully guided setup for single-mode squeezing on integrated titanium-indiffused periodically poled nonlinear resonators. A continuous-wave laser beam is delivered and the squeezed field is collected by single-mode fibers; up to -3.17(9) dB of useful squeezing is available in fibers. To showcase the usefulness of such a fiber-coupled device, we applied the generated squeezed light in a fiber-based phase sensing experiment, showing a quantum enhancement in the signal-to-noise ratio of 0.35 dB. Moreover, our investigation of the effect of photorefraction on the cavity resonance condition suggests that it causes system instabilities at high powers.

2.
Phys Rev Lett ; 130(12): 123603, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027843

RESUMO

The modern scientific method is critically dependent on precision measurements of physical parameters. A classic example is the measurement of the optical phase enabled by optical interferometry, where the error on the measured phase is conventionally bounded by the so-called Heisenberg limit. To achieve phase estimation at the Heisenberg limit, it has been common to consider protocols based on highly complex N00N states of light. However, despite decades of research and several experimental explorations, there has been no demonstration of deterministic phase estimation with N00N states reaching the Heisenberg limit or even surpassing the shot noise limit. Here we use a deterministic phase estimation scheme based on a source of Gaussian squeezed vacuum states and high-efficiency homodyne detection to obtain phase estimates with an extreme sensitivity that significantly surpasses the shot noise limit and even beats the conventional Heisenberg limit as well as the performance of a pure N00N state protocol. Using a high-efficiency setup with a total loss of about 11%, we achieve a Fisher information of 15.8(6) rad^{-2} per photon-a significant increase in performance compared to state of the art and beyond an ideal six photon N00N state scheme. This work represents an important achievement in quantum metrology, and it opens the door to future quantum sensing technologies for the interrogation of light-sensitive biological systems.

3.
Phys Rev Lett ; 124(7): 070502, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142330

RESUMO

Quantum measurement is essential to both the foundations and practical applications of quantum information science. Among many possible models of quantum measurement, feedback measurements that dynamically update their physical structure are highly interesting due to their flexibility, which enables a wide range of measurements that might otherwise be hard to implement. Here we investigate by detector tomography a measurement consisting of a displacement operation combined with photon detection followed by a real time feedback operation. We design the measurement in order to discriminate the superposition of vacuum and single photon states-the single-rail qubit-and find that it can discriminate the superposition states with a certainty of 96%. Such a feedback-controlled photon counter will facilitate the realization of quantum information protocols with single-rail qubits as well as the nonlocality test of certain entangled states.

4.
Science ; 366(6463): 369-372, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624213

RESUMO

Measurement-based quantum computation offers exponential computational speed-up through simple measurements on a large entangled cluster state. We propose and demonstrate a scalable scheme for the generation of photonic cluster states suitable for universal measurement-based quantum computation. We exploit temporal multiplexing of squeezed light modes, delay loops, and beam-splitter transformations to deterministically generate a cylindrical cluster state with a two-dimensional (2D) topological structure as required for universal quantum information processing. The generated state consists of more than 30,000 entangled modes arranged in a cylindrical lattice with 24 modes on the circumference, defining the input register, and a length of 1250 modes, defining the computation depth. Our demonstrated source of two-dimensional cluster states can be combined with quantum error correction to enable fault-tolerant quantum computation.

5.
Phys Rev Lett ; 117(14): 143601, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740796

RESUMO

A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

6.
Opt Express ; 21(6): 6670-80, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546048

RESUMO

It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon subtraction setup.


Assuntos
Luz , Modelos Estatísticos , Espalhamento de Radiação , Simulação por Computador
7.
Phys Rev Lett ; 108(23): 233601, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003954

RESUMO

We provide a straightforward demonstration of a fundamental difference between classical and quantum mechanics for a single local system: namely, the absence of a joint probability distribution of the position x and momentum p. Elaborating on a recently reported criterion by Bednorz and Belzig [Phys. Rev. A 83, 052113 (2011)] we derive a simple criterion that must be fulfilled for any joint probability distribution in classical physics. We demonstrate the violation of this criterion using the homodyne measurement of a single photon state, thus proving a straightforward signature of the breakdown of a classical description of the underlying state. Most importantly, the criterion used does not rely on quantum mechanics and can thus be used to demonstrate nonclassicality of systems not immediately apparent to exhibit quantum behavior. The criterion is directly applicable to any system described by the continuous canonical variables x and p, such as a mechanical or an electrical oscillator and a collective spin of a large ensemble.

8.
Phys Rev Lett ; 105(5): 053602, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867917

RESUMO

In a new branch of quantum computing, information is encoded into coherent states, the primary carriers of optical communication. To exploit it, quantum bits of these coherent states are needed, but it is notoriously hard to make superpositions of such continuous-variable states. We have realized the complete engineering and characterization of a qubit of two optical continuous-variable states. Using squeezed vacuum as a resource and a special photon-subtraction technique, we could with high precision prepare an arbitrary superposition of squeezed vacuum and a squeezed single photon. This could lead the way to demonstrations of coherent state quantum computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...