Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118532, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454447

RESUMO

The management of Soil Organic Carbon (SOC) is a critical component of both nature-based solutions for climate change mitigation and global food security. Agriculture has contributed substantially to a reduction in global SOC through cultivation, thus there has been renewed focus on management practices which minimize SOC losses and increase SOC gain as pathways towards maintaining healthy soils and reducing net greenhouse gas emissions. Mechanistic models are frequently used to aid in identifying these pathways due to their scalability and cost-effectiveness. Yet, they are often computationally costly and rely on input data that are often only available at coarse spatial resolutions. Herein, we build statistical meta-models of a multifactorial crop model in order to both (a) obtain a simplified model response and (b) explore the biophysical determinants of SOC responses to management and the geospatial heterogeneity of SOC dynamics across Europe. Using 5600 unique simulations of crop growth from the gridded Environmental Policy Integrated Climate-based Gridded Agricultural Model (EPIC-IIASA GAM) covering 86,000 simulation units across Europe, we build multiple polynomial regression ensemble meta-models for unique combinations of climate and soil across Europe in order to predict SOC responses to varying management intensities. We find that our biophysically-explicit meta models are highly accurate (R2 = 0.97) representations of the full mechanistic model and can be used in lieu of the full EPIC-IIASA GAM model for the estimation of SOC responses to cropland management. Model stratification by means of climate and soil clustering improved the performance of the meta-models compared to the full EU-scale model. In regional and local validations of the meta-model predictions, we find that the meta-models largely capture broad SOC dynamics such as the linear nature of SOC responses to residue application, yet they often underestimate the magnitude of SOC responses to management. Furthermore, we find notable differences between the results from the biophysically-specific models throughout Europe, which point to spatially-distinct SOC responses to management choices such as nitrogen fertilizer application rates and residue retention that illustrate the potential for these models to be used for future management applications. While more accurate input data, calibration, and validation will be needed to accurately predict SOC change, we demonstrate the use of our meta-models for biophysical cluster and field study scale analyses of broad SOC dynamics with basically zero fine-tuning of the models needed. This work provides a framework for simplifying large-scale agricultural models and identifies the opportunities for using these meta-models for assessing SOC responses to management at a variety of scales.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Agricultura/métodos , Europa (Continente) , Modelos Estatísticos , Sequestro de Carbono
2.
Adv Sci (Weinh) ; 10(5): e2205785, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507571

RESUMO

Soil health is one of the key factors in determining the sustainability of global agricultural systems and the stability of natural ecosystems. Microbial decomposition activity plays an important role in soil health; and gaining spatiotemporal insights into this attribute is critical for understanding soil function as well as for managing soils to ensure agricultural supply, stem biodiversity loss, and mitigate climate change. Here, a novel in situ electronic soil decomposition sensor that relies on the degradation of a printed conductive composite trace utilizing the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as a binder is presented. This material responds selectively to microbially active environments with a continuously varying resistive signal that can be readily instrumented with low-cost electronics to enable wide spatial distribution. In soil, a correlation between sensor response and intensity of microbial decomposition activity is observed and quantified by comparison with respiration rates over 14 days, showing that devices respond predictably to both static conditions and perturbations in general decomposition activity.

3.
Front Ecol Environ ; 19(1): 57-65, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35874182

RESUMO

Understanding carbon (C) dynamics from ecosystem to global scales remains a challenge. Although expansion of global carbon dioxide (CO2) observatories makes it possible to estimate C-cycle processes from ecosystem to global scales, these estimates do not necessarily agree. At the continental US scale, only 5% of C fixed through photosynthesis remains as net ecosystem exchange (NEE), but ecosystem measurements indicate that only 2% of fixed C remains in grasslands, whereas as much as 30% remains in needleleaf forests. The wet and warm Southeast has the highest gross primary productivity and the relatively wet and cool Midwest has the highest NEE, indicating important spatial mismatches. Newly available satellite and atmospheric data can be combined in innovative ways to identify potential C loss pathways to reconcile these spatial mismatches. Independent datasets compiled from terrestrial and aquatic environments can now be combined to advance C-cycle science across the land-water interface.

4.
PLoS One ; 15(8): e0237337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760125

RESUMO

Mobile phone use is increasing in Sub-Saharan Africa, spurring a growing focus on mobile phones as tools to increase agricultural yields and incomes on smallholder farms. However, the research to date on this topic is mixed, with studies finding both positive and neutral associations between phones and yields. In this paper we examine perceptions about the impacts of mobile phones on agricultural productivity, and the relationships between mobile phone use and agricultural yield. We do so by fitting multilevel statistical models to data from farmer-phone owners (n = 179) in 4 rural communities in Tanzania, controlling for site and demographic factors. Results show a positive association between mobile phone use for agricultural activities and reported maize yields. Further, many farmers report that mobile phone use increases agricultural profits (67% of respondents) and decreases the costs (50%) and time investments (47%) of farming. Our findings suggest that there are opportunities to target policy interventions at increasing phone use for agricultural activities in ways that facilitate access to timely, actionable information to support farmer decision making.


Assuntos
Uso do Telefone Celular/estatística & dados numéricos , Produção Agrícola/estatística & dados numéricos , Eficiência , Fazendeiros/estatística & dados numéricos , Fazendas/estatística & dados numéricos , Adulto , Uso do Telefone Celular/economia , Produção Agrícola/economia , Fazendas/economia , Feminino , Humanos , Renda/estatística & dados numéricos , Invenções , Masculino , População Rural/estatística & dados numéricos , Autorrelato/estatística & dados numéricos , Tanzânia , Zea mays
6.
Ecol Evol ; 9(3): 1227-1243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805155

RESUMO

We use a quantitative model of photosynthesis to explore leaf-level limitations to plant growth in an alpine tundra ecosystem that is expected to have longer, warmer, and drier growing seasons. The model is parameterized with abiotic and leaf trait data that is characteristic of two dominant plant communities in the alpine tundra and specifically at the Niwot Ridge Long Term Ecological Research Site: the dry and wet meadows. Model results produce realistic estimates of photosynthesis, nitrogen-use efficiency, water-use efficiency, and other gas exchange processes in the alpine tundra. Model simulations suggest that dry and wet meadow plant species do not significantly respond to changes in the volumetric soil moisture content but are sensitive to variation in foliar nitrogen content. In addition, model simulations indicate that dry and wet meadow species have different maximum rates of assimilation (normalized for leaf nitrogen content) because of differences in leaf temperature. These differences arise from the interaction of plant height and the abiotic environment characteristic of each plant community. The leaf temperature of dry meadow species is higher than wet meadow species and close to the optimal temperature for photosynthesis under current conditions. As a result, 2°C higher air temperatures in the future will likely lead to declines in dry meadow species' carbon assimilation. On the other hand, a longer and warmer growing season could increase nitrogen availability and assimilation rates in both plant communities. Nonetheless, a temperature increase of 4°C may lower rates of assimilation in both dry and wet meadow plant communities because of higher, and suboptimal, leaf temperatures.

7.
Sci Rep ; 6: 39339, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991554

RESUMO

Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

8.
Environ Manage ; 58(2): 283-96, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27272016

RESUMO

Federal lands in the United States have been identified as important areas where forests could be managed to enhance carbon storage and help mitigate climate change. However, there has been little work examining the context for decision making for carbon in a multiple-use public land environment, and how science can support decision making. This case study of the San Juan National Forest and the Bureau of Land Management Tres Rios Field Office in southwestern Colorado examines whether land managers in these offices have adequate tools, information, and management flexibility to practice effective carbon stewardship. To understand how carbon was distributed on the management landscape we added a newly developed carbon map for the SJNF-TRFO area based on Landsat TM texture information (Kelsey and Neff in Remote Sens 6:6407-6422. doi: 10.3390/rs6076407 , 2014). We estimate that only about 22 % of the aboveground carbon in the SJNF-TRFO is in areas designated for active management, whereas about 38 % is in areas with limited management opportunities, and 29 % is in areas where natural processes should dominate. To project the effects of forest management actions on carbon storage, staff of the SJNF are expected to use the Forest Vegetation Simulator (FVS) and extensions. While identifying FVS as the best tool generally available for this purpose, the users and developers we interviewed highlighted the limitations of applying an empirically based model over long time horizons. Future research to improve information on carbon storage should focus on locations and types of vegetation where carbon management is feasible and aligns with other management priorities.


Assuntos
Carbono/metabolismo , Mudança Climática , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Colorado , Conservação dos Recursos Naturais/legislação & jurisprudência , Tomada de Decisões , Técnicas de Apoio para a Decisão , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/organização & administração , Florestas , Órgãos Governamentais , Propriedade , Árvores/metabolismo , Estados Unidos
9.
PLoS One ; 10(5): e0126225, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017747

RESUMO

The Strandveld mediterranean-ecosystem of the west coast of South Africa supports floristically diverse vegetation growing on mostly nutrient-poor aeolian sands and extending from the Atlantic Ocean tens of kilometers inland. The cold Benguela current upwelling interacts with warm onshore southerly winds in summer causing coastal fogs in this region. We hypothesized that fog and other forms of occult precipitation contribute moisture and nutrients to the vegetation. We measured occult precipitation over one year along a transect running inland in the direction of the prevailing wind and compared the nutrient concentrations with those in rainwater. Occult deposition rates of P, N, K, Mg, Ca, Na, Al and Fe all decreased with distance from the ocean. Furthermore, ratios of cations to Na were similar to those of seawater, suggesting a marine origin for these. In contrast, N and P ratios in occult precipitation were higher than in seawater. We speculate that this is due to marine foam contributing to occult precipitation. Nutrient loss in leaf litter from dominant shrub species was measured to indicate nutrient demand. We estimated that occult precipitation could meet the demand of the dominant shrubby species for annual N, P, K and Ca. Of these species, those with small leaves intercepted more moisture and nutrients than those with larger leaves and could take up foliar deposits of glycine, NO3(-), NH4(+) and Li (as tracer for K) through leaf surfaces. We conclude that occult deposition together with rainfall deposition are potentially important nutrient and moisture sources for the Strandveld vegetation that contribute to this vegetation being floristically distinct from neighbouring nutrient-poor Fynbos vegetation.


Assuntos
Ecossistema , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Solo/química , Tempo (Meteorologia) , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/anatomia & histologia , Chuva , Estações do Ano , Água do Mar/química , África do Sul
10.
Artigo em Inglês | MEDLINE | ID: mdl-25187788

RESUMO

BACKGROUND: Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. RESULTS: Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. CONCLUSION: Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

11.
Carbon Balance Manag ; 8(1): 8, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24007517

RESUMO

BACKGROUND: Increases in the spatial extent and density of woody plants relative to herbaceous species have been observed across many ecosystems. These changes can have large effects on ecosystem carbon stocks and therefore are of interest for regional and national carbon inventories and for potential carbon sequestration or management activities. However, it is challenging to estimate the effect of woody plant encroachment on carbon because aboveground carbon stocks are very heterogeneous spatially and belowground carbon stocks exhibit complex and variable responses to changing plant cover. As a result, estimates of carbon stock changes with woody plant cover remain highly uncertain. In this study, we use a combination of plot- and remote sensing-based techniques to estimate the carbon impacts of piñon and juniper (PJ) encroachment in SE Utah across a variety of spatial scales with a specific focus on the role of spatial heterogeneity in carbon estimates. RESULTS: At a plot scale (300 m2) areas piñon juniper (PJ) encroached areas had 0.26 kg C m-2 less understory vegetation carbon compared to un-encroached sites. This lower amount of carbon was offset by an average of 1.82 kg C m-2 higher carbon in PJ vegetation and 0.50 kg m-2 of C in PJ surface-litter carbon. Soil mineral carbon stocks were unaffected by woody plant cover and density. Aboveground carbon stocks were highly dependent on PJ vegetation density. At a 300 m2 plot-scale, plots with low and high density of PJ forest had 1.40 kg C m-2 and 3.69 kg m-2 more carbon than the un-encroached plot. To examine how these 300 m2 variations influence landscape scale C estimates, historical and contemporary aerial photos were analyzed to develop forest density maps in order to estimate above ground PJ associated C stock changes in a 25 ha area. This technique yielded an average estimate of 1.43 kg m-2 of C accumulation with PJ encroachment. Combining this estimate with analysis of tree growth increments from dendrochronologies, we estimate that these PJ stands are accumulating aboveground C at an annual rate of 0.02 kg C m-2 with no slowing of this rate in healthy PJ. This result is in contrast to what has been observed in large areas of drought related PJ mortality, where C accumulation has ceased. CONCLUSIONS: These results illustrate that the encroachment of PJ forests in SE Utah over the last century has resulted in a large (and ongoing) accumulation of carbon in PJ trees and surface litter. However, the magnitude of the increase depends to on the density of vegetation across the landscape and the health of forest stands. Both management activities that remove forest carbon and forest mortality due to drought or wildfire have the potential to quickly reverse the multi-decadal accumulation of carbon in these stands.

12.
Sci Total Environ ; 409(10): 1836-42, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21356544

RESUMO

Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4°C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30 years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate.


Assuntos
Mudança Climática , Água Doce/química , Temperatura Alta , Solo/química , Movimentos da Água , Clima Frio , Meio Ambiente
13.
Ecol Appl ; 19(3): 668-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19425430

RESUMO

Regional, high-resolution mapping of vegetation cover and biomass is central to understanding changes to the terrestrial carbon (C) cycle, especially in the context of C management. The third most extensive vegetation type in the United States is pinyon-juniper (P-J) woodland, yet the spatial patterns of tree cover and aboveground biomass (AGB) of P-J systems are poorly quantified. We developed a synoptic remote-sensing approach to scale up pinyon and juniper projected cover (hereafter "cover") and AGB field observations from plot to regional levels using fractional photosynthetic vegetation (PV) cover derived from airborne imaging spectroscopy and Landsat satellite data. Our results demonstrated strong correlations (P < 0.001) between field cover and airborne PV estimates (r2 = 0.92), and between airborne and satellite PV estimates (r2 = 0.61). Field data also indicated that P-J AGB can be estimated from canopy cover using a unified allometric equation (r2 = 0.69; P < 0.001). Using these multiscale cover-AGB relationships, we developed high-resolution, regional maps of P-J cover and AGB for the western Colorado Plateau. The P-J cover was 27.4% +/- 9.9% (mean +/- SD), and the mean aboveground woody C converted from AGB was 5.2 +/- 2.0 Mg C/ha. Combining our data with the southwest Regional Gap Analysis Program vegetation map, we estimated that total contemporary woody C storage for P-J systems throughout the Colorado Plateau (113 600 km2) is 59.0 +/- 22.7 Tg C. Our results show how multiple remote-sensing observations can be used to map cover and C stocks at high resolution in drylands, and they highlight the role of P-J ecosystems in the North American C budget.


Assuntos
Carbono/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Biomassa , Colorado , Ecossistema , Imageamento Tridimensional , Juniperus/metabolismo , Pinus/metabolismo , Densidade Demográfica , Comunicações Via Satélite , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
14.
Environ Microbiol ; 10(11): 3093-105, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18764871

RESUMO

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Carbono/metabolismo , Fertilizantes , Fungos/classificação , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Dados de Sequência Molecular , Compostos Orgânicos/análise , Filogenia , Análise de Sequência de DNA , Solo/análise
15.
Sci Total Environ ; 404(2-3): 297-307, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18190951

RESUMO

Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Compostos Orgânicos/metabolismo , Microbiologia do Solo , Solo , Carbono/química , Fertilizantes , Modelos Biológicos , Nitrogênio/química , Compostos Orgânicos/química , Fatores de Tempo
16.
Carbon Balance Manag ; 2: 10, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17976229

RESUMO

BACKGROUND: Fires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development. RESULTS: Average annual CO2 emissions from fires in the lower 48 (LOWER48) states from 2002-2006 are estimated to be 213 (+/- 50 std. dev.) Tg CO2 yr-1 and 80 (+/- 89 std. dev.) Tg CO2 yr-1 in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO2 emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO2 emitted from fires in the US is equivalent to 4-6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO2 can, in some cases, exceed annual emissions of CO2 from fossil fuel usage. CONCLUSION: The CO2 released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO2 emissions, the pulsed emissions of CO2 during fires are partially counterbalanced by uptake of CO2 by regrowing vegetation in the decades following fire. Changes in fire severity and frequency can, however, lead to net changes in atmospheric CO2 and the short-term impacts of fire emissions on monitoring, modeling, and carbon management policy are substantial.

17.
Carbon Balance Manag ; 2: 3, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17343752

RESUMO

The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century.

18.
Nature ; 419(6910): 915-7, 2002 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12410307

RESUMO

Soils contain the largest near-surface reservoir of terrestrial carbon and so knowledge of the factors controlling soil carbon storage and turnover is essential for understanding the changing global carbon cycle. The influence of climate on decomposition of soil carbon has been well documented, but there remains considerable uncertainty in the potential response of soil carbon dynamics to the rapid global increase in reactive nitrogen (coming largely from agricultural fertilizers and fossil fuel combustion). Here, using 14C, 13C and compound-specific analyses of soil carbon from long-term nitrogen fertilization plots, we show that nitrogen additions significantly accelerate decomposition of light soil carbon fractions (with decadal turnover times) while further stabilizing soil carbon compounds in heavier, mineral-associated fractions (with multidecadal to century lifetimes). Despite these changes in the dynamics of different soil pools, we observed no significant changes in bulk soil carbon, highlighting a limitation inherent to the still widely used single-pool approach to investigating soil carbon responses to changing environmental conditions. It remains to be seen if the effects observed here-caused by relatively high, short-term fertilizer additions-are similar to those arising from lower, long-term additions of nitrogen to natural ecosystems from atmospheric deposition, but our results suggest nonetheless that current models of terrestrial carbon cycling do not contain the mechanisms needed to capture the complex relationship between nitrogen availability and soil carbon storage.


Assuntos
Carbono/metabolismo , Ecossistema , Nitrogênio/administração & dosagem , Solo/análise , Dióxido de Carbono/metabolismo , Colorado , Fertilizantes , Combustíveis Fósseis , Atividades Humanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...