Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 15(2): 2577-2613, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25983744

RESUMO

Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full advantage of the rich information content of micrometeorological flux measurements.

2.
Plant Biol (Stuttg) ; 10(1): 76-85, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17538867

RESUMO

The introduction of proton transfer reaction mass spectrometry (PTR-MS) for fast response measurements of volatile organic compounds (VOC) has enabled the use of eddy covariance methods to investigate VOC fluxes on the ecosystem scale. In this study PTR-MS flux measurements of VOC were performed over agricultural grassland during and after a cut event. Selected masses detected by the PTR-MS showed fluxes of methanol, acetaldehyde, and acetone. They were highest directly after cutting and during the hay drying phase. Simultaneously, significant fluxes of protonated ion masses 73, 81, and 83 were observed. Due to the limited identification of compounds with the PTR-MS technique, GC-MS and GC-FID-PTR-MS techniques were additionally applied. In this way, ion mass 73 could be identified as 2-butanone, mass 81 mainly as (Z)-3-hexenal, and mass 83 mainly as the sum of (Z)-3-hexenol and hexenyl acetates. Hexenal, hexenols, and the hexenyl acetates are mostly related to plant wounding during cutting. It was found that legume plants and forbs emit a higher number of different VOC species than graminoids.


Assuntos
Agricultura , Compostos Orgânicos/metabolismo , Poaceae/metabolismo , Cromatografia Gasosa , Espectrometria de Massas , Compostos Orgânicos/análise , Fatores de Tempo , Volatilização
3.
Environ Pollut ; 150(1): 125-39, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17604887

RESUMO

Recent research in nitrogen exchange with the atmosphere has separated research communities according to N form. The integrated perspective needed to quantify the net effect of N on greenhouse-gas balance is being addressed by the NitroEurope Integrated Project (NEU). Recent advances have depended on improved methodologies, while ongoing challenges include gas-aerosol interactions, organic nitrogen and N(2) fluxes. The NEU strategy applies a 3-tier Flux Network together with a Manipulation Network of global-change experiments, linked by common protocols to facilitate model application. Substantial progress has been made in modelling N fluxes, especially for N(2)O, NO and bi-directional NH(3) exchange. Landscape analysis represents an emerging challenge to address the spatial interactions between farms, fields, ecosystems, catchments and air dispersion/deposition. European up-scaling of N fluxes is highly uncertain and a key priority is for better data on agricultural practices. Finally, attention is needed to develop N flux verification procedures to assess compliance with international protocols.


Assuntos
Poluentes Atmosféricos/química , Efeito Estufa , Modelos Químicos , Compostos de Nitrogênio/química , Poluentes Atmosféricos/análise , Atmosfera , Ecossistema , Monitoramento Ambiental/métodos , Europa (Continente) , Compostos de Nitrogênio/análise
4.
ScientificWorldJournal ; 1 Suppl 2: 652-7, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-12805820

RESUMO

Grassland ecosystems can be regarded as biochemical reactors in which large amounts of organic nitrogen (N) are converted into inorganic N, and vice versa. If managed in a sustainable manner, grasslands should operate in a quasi steady state, characterized by an almost perfect balance between total N input and output. As a consequence, the exchange of gaseous N species (NH3, NO, NO2, N2O, and N2) between grasslands and the atmosphere is very small compared to the total N turnover. In this study, the effects of two management options (mowing and fertilization) on production and emission of nitrous oxide (N2O) from a grass/clover crop were examined on the basis of observations and model results referring to an experiment carried out on the Swiss Plateau in late summer of 2000. It was found that production and emission of N2O induced by mowing were of the same order of magnitude as those brought about by fertilization, suggesting a possible transfer of N from clover to the soil after defoliation. Emissions were strongly modulated by precipitation on time scales ranging from 1 day to 1 week. This indicates that effective control of N2O emissions through management on a day-to-day basis requires reliable medium-range weather forecasts. Model calculations were not able to reproduce essential characteristics of the emissions. The model slightly overestimated the background emissions, but severely underestimated the emission peaks following fertilizer application, and largely failed to reproduce emission induced by mowing. Shortfalls in the model used for this study were found in relation to the description of soil-water fluxes, soil organic matter, and the physiology of clover.


Assuntos
Meio Ambiente , Nitrogênio/análise , Óxido Nitroso/análise , Poaceae , Agricultura , Atmosfera , Clima , Ecossistema , Europa (Continente) , Fertilizantes , Gases/análise , Medicago , Modelos Teóricos
5.
Environ Pollut ; 91(1): 21-34, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-15091450

RESUMO

During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.

6.
Science ; 229(4720): 1386-8, 1985 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17798385

RESUMO

Air entrapped in bubbles of cold ice has essentially the same composition as that of the atmosphere at the time of bubble formation. Measurements of the methane concentration in air extracted by two different methods from ice samples from Siple Station in western Antarcitica allow the reconstruction of the history of the increase of the atmospheric methane during the past 200 years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...