Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 7: 115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501281

RESUMO

This article proposed a novel controller structure to track the non-linear behavior of the pneumatic muscle actuator (PMA), such as the elongation for the extensor actuator and bending for the bending PMA. The proposed controller consists of a neural network (NN) controller laid in parallel with the proportional controller (P). The parallel neural network proportional (PNNP) controllers provide a high level of precision and fast-tracking control system. The PNNP has been applied to control the length of the single extensor PMA and the bending angle of the single self-bending contraction actuator (SBCA) at different load values. For further validation, the PNNP has been applied to control a human-robot shared control system. The results show the efficiency of the proposed controller structure.

2.
Soft Robot ; 5(5): 576-591, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30040059

RESUMO

This article presents the design of a novel extensor-contractor pneumatic artificial muscle (ECPAM). This new actuator has numerous advantages over traditional pneumatic artificial muscles. These include the abilities to both contract and extend relative to a nominal initial length, to generate both contraction and extension forces, and to vary stiffness at any actuator length. A kinematic analysis of the ECPAM is presented in this article. A new output force mathematical model has been developed for the ECPAM based on its kinematic analysis and the theory of energy conservation. The correlation between experimental results and the new mathematical model has been investigated and show good correlation. Numerous stiffness experiments have been conducted to validate the variable stiffness ability of the actuator at a series of specific fixed lengths. This has proven that actuator stiffness can be adjusted independently of actuator length. Finally, a stiffness-position controller has been developed to validate the effectiveness of the novel actuator.


Assuntos
Desenho de Equipamento , Contração Muscular , Robótica/métodos , Animais , Biomimética , Modelos Teóricos
3.
Soft Robot ; 5(1): 54-70, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29412080

RESUMO

Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.

4.
Soft Robot ; 4(3): 274-284, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29062630

RESUMO

This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs.

5.
Sensors (Basel) ; 17(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858252

RESUMO

Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively.

7.
PLoS One ; 10(9): e0138198, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407322

RESUMO

Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that 'saliency map', 'fixation histogram', 'histogram of fixation duration', and 'histogram of saccade slope' are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images.


Assuntos
Emoções/fisiologia , Movimentos Oculares/fisiologia , Reconhecimento Psicológico , Percepção Visual/fisiologia , Atenção/fisiologia , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Variações Dependentes do Observador , Estimulação Luminosa , Reconhecimento Psicológico/fisiologia , Interface Usuário-Computador
8.
PLoS One ; 10(5): e0122827, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992655

RESUMO

Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches.


Assuntos
Algoritmos , Comportamento Animal , Modelos Biológicos , Animais , Formigas/fisiologia , Abelhas/fisiologia , Evolução Biológica , Aves/fisiologia , Simulação por Computador , Seleção Genética , Comportamento Social , Biologia de Sistemas
9.
Soft Robot ; 2(4): 146-154, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27625915

RESUMO

This article introduces a soft and stretchable sensor composed of silicone rubber integrating a conductive liquid-filled channel with a biocompatible sodium chloride (NaCl) solution and novel stretchable gold sputtered electrodes to facilitate the biocompatibility of the sensor. By stretching the sensor, the cross section of the channel deforms, thus leading to a change in electrical resistance. The functionalities of the sensor have been validated experimentally: changes in electrical resistance are measured as a function of the applied strain. The experimentally measured values match theoretical predictions, showing relatively low hysteresis. A preliminary assessment on the proposed sensor prototype shows good results with a maximum tested strain of 64%. The design optimization of the saline solution, the electrodes, and the algebraic approximations derived for integrating the sensors in a flexible manipulator for surgery has been discussed. The contribution of this article is the introduction of the biocompatible and stretchable gold sputtered electrodes integrated with the NaCl-filled channel rubber as a fully biocompatible solution for measuring deformations in soft and stretchable medical instruments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA