Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35622559

RESUMO

Phlorotannins have been proven to contain numerous bioactive compounds that have potential to be applied in variety industries, including cosmetics, functional foods, nutraceuticals, environmental management, and medicine. The larvicidal and growth-inhibiting properties of phlorotannins have been extensively studied in various organisms. However, the toxicity of the phloroglucinol oligomer of phlorotannin is unclear, especially in Artemia salina, Daphnia magna, Lactuca sativa, and Chlorella vulgaris, which are commonly used in many bioassays. Therefore, research using these four organisms should be designed to provide basic information about the toxic effects of phlorotannins and phloroglucinol. This study aimed to evaluate the larvicidal and inhibitory properties of phlorotannins and phloroglucinol on A. salina, D. magna, L. sativa, and C. vulgaris. Phlorotannin extract and phloroglucinol were administered at various concentrations to each test organism. The survival rate of A. salina nauplii and D. magna neonates was observed every 24 h to 72 h, whereas the L. sativa seed germination and inhibition rate of C. vulgaris were observed up to 96 h. The results showed that the 24 h LC50 of phlorotannin on A. salina and D. magna were 10.67 and 1.32 mg/mL, respectively. The germination inhibition of L. sativa was 53.3% with a seed growth of less than 4 mm after 96 h upon exposure to 1 mg/mL of phlorotannin. Freshwater and seawater C. vulgaris experienced yield inhibition of 39.47 and 43.46%, respectively, when 2 mg/mL of phlorotanin was added. These results indicate that phlorotannin affects the survival and growth of the test organisms, so its use as a pesticide, herbicide, and algaecide agent for environmental and aquaculture applications can be further studied.


Assuntos
Artrópodes , Chlorella vulgaris , Herbicidas , Animais , Aquicultura , Artemia , Floroglucinol/toxicidade
2.
Foods ; 10(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829106

RESUMO

In Korea, the web-foot octopus (Amphioctopus sp.) is commonly consumed as jjukkumi bokkeum, a spicy stir-fried octopus dish. Using steaming and smoking methods, we made jjukkumi bokkeum home meal replacement (HMR) products. The response surface methodology (RSM) was employed to optimize the steam and smoke processes. Quick freezing was applied to freeze the test product at -35 °C. Then, the physicochemical, biological, nutritional characteristics, and shelf-life of the test HMR products were evaluated. The optimal conditions for steaming and smoking were 95 °C for 2 min and 70 °C for 11 min, respectively. The pH, volatile basic nitrogen content, and thiobarbituric acid-reactive substances content decreased after steaming and smoking, indicating that these processes maintained these parameters well. Sensory evaluation revealed that there were no changes in these characteristics after freezing and reheating. Further, the test HMR products contained the daily nutritional requirements of macro and micronutrients, as well as amino acids and fatty acids. The shelf-life of the HMR products was estimated to be 15 months. The findings of this study indicate that the application of steam and smoke processes to produce a jjukkumi bokkeum HMR product results in a high-quality product with a long shelf-life.

3.
Mar Drugs ; 19(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34677444

RESUMO

Fucosterol (24-ethylidene cholesterol) is a bioactive compound belonging to the sterol group that can be isolated from marine algae. Fucosterol of marine algae exhibits various biological activities including anti-osteoarthritic, anticancer, anti-inflammatory, anti-photoaging, immunomodulatory, hepatoprotective, anti-neurological, antioxidant, algicidal, anti-obesity, and antimicrobial. Numerous studies on fucosterol, mainly focusing on the quantification and characterization of the chemical structure, bioactivities, and health benefits of fucosterol, have been published. However, there is no comprehensive review on safety and toxicity levels of fucosterol of marine algae. This review aims to discuss the bioactivities, safety, and toxicity of fucosterol comprehensively, which is important for the application and development of fucosterol as a bioactive compound in nutraceutical and pharmaceutical industries. We used four online databases to search for literature on fucosterol published between 2002 and 2020. We identified, screened, selected, and analyzed the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method and identified 43 studies for review. Despite the potential applications of fucosterol, we identified the need to fill certain related research gaps. Fucosterol exhibited low toxicity in animal cell lines, human cell lines, and animals. However, studies on the safety and toxicity of fucosterol at the clinical stage, which are required before fucosterol is developed for the industry, are lacking.


Assuntos
Antioxidantes , Microalgas , Estigmasterol/análogos & derivados , Animais , Organismos Aquáticos , Produtos Biológicos , Relação Estrutura-Atividade
4.
Foods ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441740

RESUMO

Chub mackerel (CM) is a commercial fish in Korea, owing to its availability and nutritional values. This study aimed to develop a ready-to-heat (RTH) Korean preparation of CM, known as Godeungo gangjeong. We utilized vacuum frying technology to fry the CM and evaluated its quality. Conventional frying with a deep fryer was performed in parallel to assess the superiority of the vacuum fryer. We optimized the frying conditions of vacuum frying (VBF) and deep frying (DBF) using response surface methodology. At optimum conditions of 95 °C for 7 min 42 s, VBF produced better sensory, chemical, and microbial properties than DBF at 190 °C for 5 min 30 s. The nutritional values, including amino acid and fatty acid contents, were investigated and found to be higher in VBF than in DBF. Sensory properties also showed better scores on VBF than DBF, especially in appearance, aroma, taste, and overall acceptability. The VBF produced lower volatile basic nitrogen (VBN), thiobarbituric acid reactive substances (TBARS), and total bacterial count (TBC) than DBF. The findings confirmed that vacuum frying is a better option to produce RTH Godeungo gangjeong, since it provides less oxidation and maintains the product quality. Using the Arrhenius approach, the product was concluded to preserve both quality and safety for 9 months of storage at -18 °C.

5.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923448

RESUMO

Phlorotannins are secondary metabolites produced by brown seaweeds with antiviral, antibacterial, antifungal, and larvicidal activities. Phlorotannins' structures are formed by dibenzodioxin, ether and phenyl, ether, or phenyl linkages. The polymerization of phlorotannins is used to classify and characterize. The structural diversity of phlorotannins grows as polymerization increases. They have been characterized extensively with respect to chemical properties and functionality. However, review papers of the biological activities of phlorotannins have focused on their antibacterial and antiviral effects, and reviews of their broad antifungal and larvicidal effects are lacking. Accordingly, evidence for the effectiveness of phlorotannins as antifungal and larvicidal agents is discussed in this review. Online databases (ScienceDirect, PubMed, MEDLINE, and Web of Science) were used to identify relevant articles. In total, 11 articles were retrieved after duplicates were removed and exclusion criteria were applied. Phlorotannins from brown seaweeds show antifungal activity against dermal and plant fungi, and larvicidal activity against mosquitos and marine invertebrate larvae. However, further studies of the biological activity of phlorotannins against fungal and parasitic infections in aquaculture fish, livestock, and companion animals are needed for systematic analyses of their effectiveness. The research described in this review emphasizes the potential applications of phlorotannins as pharmaceutical, functional food, pesticide, and antifouling agents.


Assuntos
Antifúngicos/farmacologia , Culicidae/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos , Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Taninos/farmacologia , Animais , Antifúngicos/isolamento & purificação , Culicidae/embriologia , Fungicidas Industriais/isolamento & purificação , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Taninos/isolamento & purificação
6.
Foods ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669572

RESUMO

Phlorotannins are polyphenolic compounds produced via polymerization of phloroglucinol, and these compounds have varying molecular weights (up to 650 kDa). Brown seaweeds are rich in phlorotannins compounds possessing various biological activities, including algicidal, antioxidant, anti-inflammatory, antidiabetic, and anticancer activities. Many review papers on the chemical characterization and quantification of phlorotannins and their functionality have been published to date. However, although studies on the safety and toxicity of these phlorotannins have been conducted, there have been no articles reviewing this topic. In this review, the safety and toxicity of phlorotannins in different organisms are discussed. Online databases (Science Direct, PubMed, MEDLINE, and Web of Science) were searched, yielding 106 results. Following removal of duplicates and application of the exclusion criteria, 34 articles were reviewed. Phlorotannins from brown seaweeds showed low toxicity in cell lines, invertebrates, microalgae, seaweeds, plants, animals (fish, mice, rats, and dogs), and humans. However, the safety and toxicity of phlorotannins in aquaculture fish, livestock, and companion animals are limited. Further studies in these organisms are necessary to carry out a systematic analysis of the safety and toxicity of phlorotannins and to further identify the potential of phlorotannins as functional foods, feeds, and pharmaceuticals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...