Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 512, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525914

RESUMO

BACKGROUND: Indian natural products have been anecdotally used for cancer treatment but with limited efficacy. To better understand their mechanism, we examined the publicly available data for the activity of Indian natural products in the NCI-60 cell line panel. METHODS: We examined associations of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 75 compounds derived from Indian plant-based natural products. We analyzed expression measures for annotated transcripts, lncRNAs, and miRNAs, and protein-changing single nucleotide variants in cancer-related genes. We also examined the similarities between cancer cell line response to Indian natural products and response to reference anti-tumor compounds recorded in a U.S. National Cancer Institute (NCI) Developmental Therapeutics Program database. RESULTS: Hierarchical clustering based on cell line response measures identified clustering of Phyllanthus and cucurbitacin products with known anti-tumor agents with anti-mitotic mechanisms of action. Curcumin and curcuminoids mostly clustered together. We found associations of response to Indian natural products with expression of multiple genes, notably including SLC7A11 involved in solute transport and ATAD3A and ATAD3B encoding mitochondrial ATPase proteins, as well as significant associations with functional single nucleotide variants, including BRAF V600E. CONCLUSION: These findings suggest potential mechanisms of action and novel associations of in vitro response with gene expression and some cancer-related mutations that increase our understanding of these Indian natural products.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , ATPases Associadas a Diversas Atividades Celulares , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana , Proteínas Mitocondriais , National Cancer Institute (U.S.) , Neoplasias/tratamento farmacológico , Neoplasias/genética , Nucleotídeos , Farmacogenética , Estados Unidos
2.
Mol Oncol ; 15(2): 381-406, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169510

RESUMO

Natural products remain a significant source of anticancer chemotherapeutics. The search for targeted drugs for cancer treatment includes consideration of natural products, which may provide new opportunities for antitumor cytotoxicity as single agents or in combination therapy. We examined the association of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 1302 small molecules which included natural products, semisynthetic natural product derivatives, and synthetic compounds based on a natural product pharmacophore from the Developmental Therapeutics Program of the US National Cancer Institute's database. These compounds were obtained from a variety of plant, marine, and microbial species. Molecular information utilized for the analysis included expression measures for 23059 annotated transcripts, lncRNAs, and miRNAs, and data on protein-changing single nucleotide variants in 211 cancer-related genes. We found associations of expression of multiple genes including SLFN11, CYP2J2, EPHX1, GPC1, ELF3, and MGMT involved in DNA damage repair, NOTCH family members, ABC and SLC transporters, and both mutations in tyrosine kinases and BRAF V600E with NCI-60 responses to specific categories of natural products. Hierarchical clustering identified groups of natural products, which correlated with a specific mechanism of action. Specifically, several natural product clusters were associated with SLFN11 gene expression, suggesting that potential action of these compounds may involve DNA damage. The associations between gene expression or genome alterations of functionally relevant genes with the response of cancer cells to natural products provide new information about potential mechanisms of action of these identified clusters of compounds with potentially similar biological effects. This information will assist in future drug discovery and in design of new targeted cancer chemotherapy agents.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias , Neoplasias , RNA Neoplásico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
3.
Mol Cell Biol ; 40(7)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31932478

RESUMO

Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Receptores ErbB/metabolismo , Humanos , Camundongos , Transporte Proteico/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Transporte Vesicular/genética
4.
Sci Rep ; 7(1): 897, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420888

RESUMO

Brain function is governed by precise regulation of gene expression across its anatomically distinct structures; however, the expression patterns of genes across hundreds of brain structures are not clearly understood. Here, we describe a gene expression model, which is representative of the healthy human brain transcriptome by using data from the Allen Brain Atlas. Our in-depth gene expression profiling revealed that 84% of genes are expressed in at least one of the 190 brain structures studied. Hierarchical clustering based on gene expression profiles delineated brain regions into structurally tiered spatial groups and we observed striking enrichment for region-specific processes. Further, weighted co-expression network analysis identified 19 robust modules of highly correlated genes enriched with functional associations for neurogenesis, dopamine signaling, immune regulation and behavior. Also, structural distribution maps of major neurotransmission systems in the brain were generated. Finally, we developed a supervised classification model, which achieved 84% and 81% accuracies for predicting autism- and Parkinson's-implicated genes, respectively, using our expression model as a baseline. This study represents the first use of global gene expression profiling from healthy human brain to develop a disease gene prediction model and this generic methodology can be applied to study any neurological disorder.


Assuntos
Encéfalo/metabolismo , Doenças do Sistema Nervoso/genética , Transcriptoma , Perfilação da Expressão Gênica , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-25725059

RESUMO

LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will help support many important areas of biomedical research. By performing an extensive literature study, we compiled a collection of 533 experimentally determined localization signals, along with the proteins that harbor such signals. Each signal in the LocSigDB is annotated with its localization, source, PubMed references and is linked to the proteins in UniProt database along with the organism information that contain the same amino acid pattern as the given signal. From LocSigDB webserver, users can download the whole database or browse/search for data using an intuitive query interface. To date, LocSigDB is the most comprehensive compendium of protein localization signals for eight distinct subcellular locations. Database URL: http://genome.unmc.edu/LocSigDB/


Assuntos
Bases de Dados de Proteínas , Sinais Direcionadores de Proteínas/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Células Eucarióticas/metabolismo , Humanos , Transporte Proteico/fisiologia
6.
BMC Syst Biol ; 8: 104, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25231063

RESUMO

BACKGROUND: Obesity is now a worldwide epidemic disease and poses a major risk for diet related diseases like type 2 diabetes, cardiovascular disease, stroke and fatty liver among others. In the present study we employed the murine model of diet-induced obesity to determine the early, tissue-specific, gene expression signatures that characterized progression to obesity and type 2 diabetes. RESULTS: We used the C57BL/6 J mouse which is known as a counterpart for diet-induced human diabetes and obesity model. Our initial experiments involved two groups of mice, one on normal diet (ND) and the other on high-fat and high-sucrose (HFHSD). The later were then further separated into subgroups that either received no additional treatment, or were treated with different doses of the Ayurvedic formulation KAL-1. At different time points (week3, week6, week9, week12, week15 and week18) eight different tissues were isolated from mice being fed on different diet compositions. These tissues were used to extract gene-expression data through microarray experiment. Simultaneously, we also measured different body parameters like body weight, blood Glucose level and cytokines profile (anti-inflammatory & pro-inflammatory) at each time point for all the groups. Using partial least square discriminant analysis (PLS-DA) method we identified gene-expression signatures that predict physiological parameters like blood glucose levels, body weight and the balance of pro- versus anti-inflammatory cytokines. The resulting models successfully predicted diet-induced changes in body weight and blood glucose levels, although the predictive power for cytokines profiles was relatively poor. In the former two instances, however, we could exploit the models to further extract the early gene-expression signatures that accurately predict the onset of diabetes and obesity. These extracted genes allowed definition of the regulatory network involved in progression of disease. CONCLUSION: We identified the early gene-expression signature for the onset of obesity and type 2 diabetes. Further analysis of this data suggests that some of these genes could be used as potential biomarkers for these two disease-states.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Transcriptoma/fisiologia , Animais , Glicemia , Peso Corporal , Citocinas/sangue , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Análise dos Mínimos Quadrados , Ayurveda , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Obesidade/genética , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...