Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077418

RESUMO

Arid tropical archipelagos, such as the Galapagos Islands, host a high concentration of endemic plant species, many of which require restoration intervention to recover from past environmental degradation. Water-saving technologies (WSTs) have potential for hastening restoration by providing plants with additional water during the early stages of growth. However, it remains unclear whether such technologies provide an advantage for plant species of arid-tropical regions. This study examined the effect of the water-saving technology Groasis Waterboxx® (Groasis) on the rare endemic plant species Scalesia affinis ssp. brachyloba during early stages of restoration. Survival was monitored for 374 individuals planted across six sites on Santa Cruz Island, Galapagos (326 with technology and 48 as controls). Kaplan-Meier survival analysis showed that the use of Groasis reduced mortality during the first two years of the seedling survival. A mixed-effect logistic regression that modelled plant survival as a function of total precipitation, maximum temperature, and WST treatment (Groasis and no-technology control) found that despite low overall survival rates, plants grown with Groasis exhibited a three-fold higher predicted survival by the end of the 3.7 year duration of the study. Finally, through a resampling method, we demonstrate that the effect of the WST treatment is not dependent on the unbalanced design typical of a restoration project framework. We conclude that water-saving technologies such as the Groasis Waterboxx® can enhance survival of rare plant species such as S. affinis ssp. brachyloba in restoration programs in arid-tropical regions.


Assuntos
Asteraceae , Clima Tropical , Humanos , Equador , Plantas
2.
Trends Plant Sci ; 25(4): 329-339, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953170

RESUMO

The study of insular systems has a long history in ecology and biogeography. Island plants often differ remarkably from their noninsular counterparts, constituting excellent models for exploring eco-evolutionary processes. Trait-based approaches can help to answer important questions in island biogeography, yet plant trait patterns on islands remain understudied. We discuss three key hypotheses linking functional ecology to island biogeography: (i) plants in insular systems are characterized by distinct functional trait syndromes (compared with noninsular environments); (ii) these syndromes differ between true islands and terrestrial habitat islands; and (iii) island characteristics influence trait syndromes in a predictable manner. We are convinced that implementing trait-based comparative approaches would considerably further our understanding of plant ecology and evolution in insular systems.


Assuntos
Biodiversidade , Ecologia , Evolução Biológica , Ecossistema , Ilhas , Plantas
3.
PeerJ ; 7: e8156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824769

RESUMO

Restoration of keystone species is a primary strategy used to combat biodiversity loss and recover ecological services. This is particularly true for oceanic islands, which despite their small land mass, host a large fraction of the planet's imperiled species. The endemic Opuntia spp. cacti are one example and a major focus for restoration in the Galápagos archipelago, Ecuador. These cacti are keystone species that support much of the unique vertebrate animal community in arid zones, yet human activities have substantially reduced Opuntia populations. Extreme aridity poses an obstacle for quickly restoring Opuntia populations though water-saving technologies may provide a solution. The aim of this study was to evaluate current restoration efforts and the utility of two water-saving technologies as tools for the early stages of restoring Opuntia populations in the Galápagos archipelago. We planted 1,425 seedlings between 2013 and 2018, of which 66% had survived by the end of 2018. Compared with no-technology controls, seedlings planted with Groasis Waterboxx® water-saving technology (polypropylene trays with water reservoir and protective refuge for germinants) had a greater rate of survival in their first two-years of growth on one island (Plaza Sur) and greater growth rate on four islands whereas the "Cocoon" water-saving technology (similar technology but made of biodegradable fiber) did not affect growth and actually reduced seedling survival. Survival and growth rate were also influenced by vegetation zone, elevation, and precipitation in ways largely contingent on island. Overall, our findings suggest that water-saving technologies are not always universally applicable but can substantially increase the survival and growth rate of seedlings in certain conditions, providing in some circumstances a useful tool for improving restoration outcomes for rare plants of arid ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...