Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968138

RESUMO

While chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell malignancies, many patients relapse and therefore strategies to improve antitumor immunity are needed. We previously designed a novel autologous bispecific CAR targeting CD19 and CD22 (CAR19-22), which was well tolerated and associated with high response rates but relapse was common. Interleukin-15 (IL15) induces proliferation of diverse immune cells and can augment lymphocyte trafficking. Here, we report the results of a phase 1 clinical trial of the first combination of a novel recombinant polymer-conjugated IL15 receptor agonist (NKTR-255), with CAR19-22, in adults with relapsed / refractory B-cell acute lymphoblastic leukemia. Eleven patients were enrolled, nine of whom successfully received CAR19-22 followed by NKTR-255. There were no dose limiting toxicities, with transient fever and myelosuppression as the most common possibly related toxicities. We observed favorable efficacy with eight out of nine patients (89%) achieving measurable residual disease negative remission. At 12 months, progression-free survival for NKTR-255 was double that of historical controls (67% vs 38%). We performed correlative analyses to investigate the effects of IL15 receptor agonism. Cytokine profiling showed significant increases in IL15 and the chemokines CXCL9 and CXCL10. The increase in chemokines was associated with decreases in absolute lymphocyte counts and CD8+ CAR T-cells in blood and ten-fold increases in CSF CAR-T cells, suggesting lymphocyte trafficking to tissue. Combining NKTR-255 with CAR19-22 was safe, feasible and associated with high rates of durable responses (NCT03233854).

2.
Front Transplant ; 3: 1353803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993780

RESUMO

Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.

3.
Blood Adv ; 8(14): 3691-3704, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38701354

RESUMO

ABSTRACT: Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Mitocôndrias , Condicionamento Pré-Transplante , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mitocôndrias/metabolismo , Camundongos , Humanos , Condicionamento Pré-Transplante/métodos , Modelos Animais de Doenças , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/imunologia
4.
Am J Hematol ; 99(8): 1485-1491, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661220

RESUMO

Autologous hematopoietic cell transplantation (AHCT) is often used as a consolidation for patients with peripheral T-cell lymphomas (PTCLs) due to the poor prognosis associated with this heterogenous group of disorders. However, a significant number of patients will experience post-AHCT disease relapse. Here, we report a retrospective study of consecutive 124 patients with PTCLs who underwent AHCT from 2008 to 2020. With a median follow-up of 6.01 years following AHCT, 49 patients (40%) experienced disease relapse. As expected, more patients who were not in first complete remission experienced post-AHCT relapse. Following relapse, majority of the patients (70%) receiving systemic therapies intended as bridging to curative allogeneic HCT. However, only 18 (53%) patients eventually underwent allogeneic HCT. The estimated 3-year OS among patients proceeding to allogeneic HCT was 72% (95% CI 46%-87%). Our report details the pattern of post-AHCT relapse and the management of relapsed disease using different therapeutic modalities.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma de Células T Periférico , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Estudos Retrospectivos , Idoso , Linfoma de Células T Periférico/terapia , Linfoma de Células T Periférico/mortalidade , Recidiva , Transplante Autólogo , Recidiva Local de Neoplasia/terapia , Adulto Jovem
5.
Blood Adv ; 8(12): 3314-3326, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38498731

RESUMO

ABSTRACT: Chimeric antigen receptor (CAR) T cells directed against CD19 (CAR19) are a revolutionary treatment for B-cell lymphomas (BCLs). CAR19 cell expansion is necessary for CAR19 function but is also associated with toxicity. To define the impact of CAR19 expansion on patient outcomes, we prospectively followed a cohort of 236 patients treated with CAR19 (brexucabtagene autoleucel or axicabtagene ciloleucel) for mantle cell lymphoma (MCL), follicular lymphoma, and large BCL (LBCL) over the course of 5 years and obtained CAR19 expansion data using peripheral blood immunophenotyping for 188 of these patients. CAR19 expansion was higher in patients with MCL than other lymphoma histologic subtypes. Notably, patients with MCL had increased toxicity and required fourfold higher cumulative steroid doses than patients with LBCL. CAR19 expansion was associated with the development of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and the requirement for granulocyte colony-stimulating factor 14 days after infusion. Younger patients and those with elevated lactate dehydrogenase (LDH) had significantly higher CAR19 expansion. In general, no association between CAR19 expansion and LBCL treatment response was observed. However, when controlling for tumor burden, we found that lower CAR19 expansion in conjunction with low LDH was associated with improved outcomes in LBCL. In sum, this study finds CAR19 expansion principally associates with CAR-related toxicity. Additionally, CAR19 expansion as measured by peripheral blood immunophenotyping may be dispensable to favorable outcomes in LBCL.


Assuntos
Antígenos CD19 , Imunofenotipagem , Imunoterapia Adotiva , Humanos , Masculino , Antígenos CD19/imunologia , Pessoa de Meia-Idade , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Feminino , Idoso , Receptores de Antígenos Quiméricos/imunologia , Adulto , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/sangue , Idoso de 80 Anos ou mais , Produtos Biológicos
6.
J Nucl Med ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360050

RESUMO

Noninvasive molecular imaging of acute graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation has great potential to detect GvHD at the early stages, aid in grading of the disease, monitor treatment response, and guide therapeutic decisions. Although the specificity of currently available tracers appears insufficient for clinical GvHD diagnosis, recently, several preclinical studies have identified promising new imaging agents targeting one or more biologic processes involved in GvHD pathogenesis, ranging from T-cell activation to tissue damage. In this review, we summarize the different approaches reported to date for noninvasive detection of GvHD using molecular imaging with a specific focus on the use of PET. We discuss possible applications of molecular imaging for the detection of GvHD in the clinical setting, as well as some of the predictable challenges that are faced during clinical translation of these approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA