Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 2(8): 855-66, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23951412

RESUMO

PC12-27, a PC12 clone characterized by high levels of the transcription repressor REST and by very low mTORC2 activity, had been shown to be unresponsive to NGF, possibly because of its lack of the specific TrkA receptor. The neurotrophin receptor repressed by high REST in PC12-27 cells, however, is shown now to be not TrkA, which is normal, but p75(NTR), whose expression is inhibited at the transcriptional level. When treated with NGF, the PC12-27 cells lacking p75(NTR) exhibited a defective TrkA autophosphorylation restricted, however, to the TrkA(Y490) site, and an impairment of the PI3K signaling cascade. This defect was sustained in part by a mTORC1-dependent feed-back inhibition that in wtPC12 cells appeared marginal. Transfection of p75(NTR) to a level and surface distribution analogous to wtPC12 did not modify various high REST-dependent properties of PC12-27 cells such as high ß-catenin, low TSC2 and high proliferation rate. In contrast, the defective PI3K signaling cascade and its associated mTORC2 activity were largely rescued together with the NGF-induced neurite outgrowth response. These changes were not due to p75(NTR) alone but required its cooperation with TrkA. Our results demonstrate that, in PC12, high REST induces alterations of NGF signaling which, however, are indirect, dependent on the repression of p75(NTR); and that the well-known potentiation by p75(NTR) of the TrkA signaling does not concern all the effects induced by NGF but primarily the PI3K cascade and its associated mTORC2, a complex known to play an important role in neural cell differentiation.

2.
Trends Cell Biol ; 23(6): 289-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23414932

RESUMO

The Repressor Element-1 (RE-1) Silencing Transcription (REST) factor, which is highly expressed in stem cells and non-neural cells, with low expression in neurons and other neural cells, orchestrates neural differentiation and preserves the unique neural phenotype. REST also plays a role in proliferation, although its effect differs depending on the cell type. It acts as an oncogene in neural cells and tumors (medulloblastomas, neuroblastomas, glioblastomas) and as a tumor suppressor in carcinomas of the lung, breast, and colon. The mechanisms underlying this duality have started to emerge recently and new therapeutic approaches based on these findings are being developed. Here, we present the mechanisms proposed to account for the oncogenic and antioncogenic roles of REST and discuss the therapeutic perspective of recent advances, particularly for small-cell lung cancer.


Assuntos
Oncogenes , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Carcinoma/genética , Carcinoma/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo
3.
J Neurochem ; 120(5): 699-709, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22176577

RESUMO

L1 cell adhesion molecule (L1CAM), an adhesion/signaling protein encoded by a gene target of the transcription repressor RE-1-Silencing Transcription factor (REST), is expressed in two alternatively spliced isoforms. The full-length isoform, typical of low-REST neural cells, plays key roles in survival/migration, outgrowth/fasciculation/regeneration of axons, synaptic plasticity; the isoform missing two mini-exons, abundant in a few high-REST non-neural cells, maintains some effect on migration and proliferation. To investigate whether and how L1CAM alternative splicing depends on REST we used neural cell models expressing low or high levels of REST (PC12, SH-SY5Y, differentiated NT2/D1 and primary neurons transduced or not with REST). The short isoform was found to rise when the low-REST levels of neural cells were experimentally increased, while the full-length isoform increased in high-REST cells when the repressor tone was attenuated. These results were due to Nova2, a neural cell-specific splicing factor shown here to be repressed by REST. REST control of L1CAM occurs therefore by two mechanisms, transcription and alternative splicing. The splicing mechanism, affecting not only L1CAM but all Nova2 targets (∼7% of brain-specific splicing, including the mRNAs of other adhesion and synaptic proteins) is expected to be critical during development and important also for the structure and function of mature neural cells.


Assuntos
Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Proteínas do Tecido Nervoso/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Antígeno Neuro-Oncológico Ventral , Neurônios , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ratos , Proteínas Repressoras/genética , Transdução Genética
4.
J Cell Sci ; 124(Pt 18): 3174-86, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21868364

RESUMO

The RE-1-specific silencing transcription factor (REST or NRSF) is a transcription repressor that orchestrates differentiation and also operates in differentiated neurons and neurosecretory cells (neural cells). Its role in proliferation has been investigated so far only in rapidly growing tumors, with conflicting results: suppression in non-neural tumors, stimulation in medulloblastomas. Working with two clones of chromaffin-neuronal PC12 cells, which express different levels of REST, and using genetic complementation and knockdown approaches, we show that REST also promotes proliferation in differentiated neural cells. Mechanistically, this occurs by a signaling pathway involving REST, the GTPase-activating protein tuberin (TSC2) and the transcription co-factor ß-catenin. In PC12 cells, raised expression of REST correlates with reduced TSC2 levels, nuclear accumulation and co-transcriptional activation of ß-catenin, and increased expression of its target oncogenes Myc and Ccnd1, which might account for the proliferation advantage and the distinct morphology. Rest transcription is also increased, unveiling the existence of a self-sustaining, feed-forward REST-TSC2-ß-catenin signaling loop that is also operative in another neural cell model, NT2/D1 cells. Transfection of REST, knockdown of TSC2 or forced expression of active ß-catenin recapitulated the biochemical, functional and morphological properties of the high-expressing REST clone in wild-type PC12 cells. Upregulation of REST promoted proliferation and phenotypic changes, thus hindering neurosecretion. The new REST-TSC2-ß-catenin signaling paradigm might have an important role in various aspects of neural cell physiology and pathology, including the regulation of proliferation and neurosecretion.


Assuntos
Retroalimentação Fisiológica , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neurônios/patologia , Neurossecreção/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , Ratos , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transgenes/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...