Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Carbohydr Res ; 516: 108562, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35500517

RESUMO

A convenient strategy for a 'one-pot' synthesis of neoglycoproteins (NGP) was developed using the myrosinase-glucosinolate couple, a natural enzyme-substrate system. This enzymatic reaction allowed us to generate an isothiocyanate in situ which then reacted with the lysine residues of bovine serum albumin protein (BSA) to produce multivalent neoglycoproteins. Using two models, glucomoringin which is a natural glucosinolate bearing a l-rhamnose unit, and an artificial glucosinolate specifically designed for mannose type lectins, an average of up to 17.8 and 28.7 carbohydrate residues could be respectively grafted onto the BSA protein. This process is comparable to commercial approaches using BSA-ManC without the disadvantage of handling harmful chemical reagents. Lectin binding screening (GLYcoPROFILE®) showed that among all NGPs synthesized, BSA-Man 16 gave similar and in some cases better affinities in comparison with commercial BSA-Manc towards various mannose-specific lectins.


Assuntos
Lectinas de Ligação a Manose , Manose , Glucosinolatos , Glicoproteínas/metabolismo , Glicosídeo Hidrolases , Humanos , Lectinas/química , Manose/metabolismo , Soroalbumina Bovina/metabolismo
2.
J Chromatogr A ; 1661: 462687, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864234

RESUMO

Capillary electrophoresis (CE) is a powerful technique continuously expanding into new application fields. One of these applications involves the study of enzymes, their catalytic activities and the alteration of this activity by specific ligands. In this review, two model enzymes, lipases and kinases, will be used since they differ substantially in their modes of action, reaction requirements and applications making them perfect subjects to demonstrate the advantages and limitations of CE-based enzymatic assays. Indeed, the ability to run CE in various operation modes and hyphenation to different detectors is essential for lipase-based studies. Additionally, the low sample consumption provided by CE promotes it as a promising technique to assay human and viral nucleoside kinases. Undeniably, these are rarely commercially available enzymes and must be frequently produced in the laboratory, a process which requires special sets of skills. CE-based lipase and kinase reactions can be performed outside the capillary (pre-capillary) where the reactants are mixed in a vial prior to their separation or, inside the capillary (in-capillary) where the reactants are mixed before the electrophoretic analysis. These enzyme-based applications of CE will be compared to those of liquid chromatography-based applications in terms of advantages and limitations. Binding assays based on affinity CE and the compelling microscale thermophoresis (MST) will be briefly presented as they allow a broad understanding of the molecular mechanism behind ligand binding and of the resulting modulation in activity.


Assuntos
Eletroforese Capilar , Lipase , Ensaios Enzimáticos , Humanos , Ligantes
3.
Plants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616211

RESUMO

Polygonum cuspidatum (P. cuspidatum) is among the world's most problematic invasive plant species with negative ecological, socio-economic and security consequences. Management operations in areas invaded systematically generate a large quantity of plant waste, most often without outlets. Using this plant material could constitute a new alternative treatment for sustainable management. P. cuspidatum is well known to have numerous biological properties, containing notably stilbenes, quinones, flavonoids and phenolic acids. The present work proposes a reliable strategy using powerful techniques for the screening and the evaluation of the dermo-cosmetic potential of its aerial parts (AP) and root parts (RP). To the best of our knowledge, only antioxidant and anti-tyrosinase activities were previously evaluated on P. cuspidatum among the targets studied (superoxide dismutase, hyaluronidase, elastase, collagenase and tyrosinase). The results revealed strong antioxidant and anti-collagenase activities, moderate anti-hyaluronidase activity, while weak anti-elastase and anti-tyrosinase activities were observed for ethanolic extracts. Different standards selected and screened on the same targets made it possible to correlate the observed residual activities of produced extracts of P. cuspidatum from Savoie Mont Blanc and their chemical compositions. A structure-activity study was thus conducted on main molecular families, widely represented in the genus Polygonum.

5.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500781

RESUMO

This work describes the synthesis, enzymatic activities on PI3K and mTOR, in silico docking and cellular activities of various uncommon 2,4,7 trisubstituted pyrido[3,2-d]pyrimidines. The series synthesized offers a chemical diversity in C-7 whereas C-2 (3-hydroxyphenyl) and C-4 groups (morpholine) remain unchanged, in order to provide a better understanding of the molecular determinants of PI3K selectivity or dual activity on PI3K and mTOR. Some C-7 substituents were shown to improve the efficiency on kinases compared to the 2,4-di-substituted pyrimidopyrimidine derivatives used as references. Six novel derivatives possess IC50 values on PI3Kα between 3 and 10 nM. The compounds with the best efficiencies on PI3K and mTOR induced micromolar cytotoxicity on cancer cell lines possessing an overactivated PI3K pathway.


Assuntos
Desenho de Fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
6.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881594

RESUMO

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Assuntos
Benchmarking , Laboratórios , Calorimetria , Reprodutibilidade dos Testes , Temperatura
7.
Anal Bioanal Chem ; 413(14): 3667-3681, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33797603

RESUMO

The evaluation of binding affinities between large biomolecules and small ligands is challenging and requires highly sensitive techniques. Microscale thermophoresis (MST) is an emerging biophysical technique used to overcome this limitation. This work describes the first MST binding method to evaluate binding affinities of small ligands to lipases from crude porcine pancreatic extracts. The conditions of the MST assay were thoroughly optimized to successfully evaluate the dissociation constant (Kd) between pancreatic lipases (PL) and triterpenoid compounds purified from oakwood. More precisely, the fluorescent labeling of PL (PL*) using RED-NHS dye was achieved via a buffer exchange procedure. The MST buffer was composed of 20 mM NaH2PO4 + 77 mM NaCl (pH 6.6) with 0.05% Triton-X added to efficiently prevent protein aggregation and adsorption, even when using only standard, uncoated MST capillaries. Storage at -20 °C ensured stability of PL* and its fluorescent signal. MST results showed that crude pancreatic extracts were suitable as a source of PL for the evaluation of binding affinities of small ligands. Quercotriterpenoside-I (QTT-I) demonstrated high PL* binding affinity (31 nM) followed by 3-O-galloylbarrinic acid (3-GBA) (500 nM) and bartogenic acid (BA) (1327 nM). To enrich the 50 kDa lipase responsible for the majority of hydrolysis activity in the crude pancreatic extracts, ammonium sulfate precipitation was attempted and its efficiency confirmed using capillary electrophoresis (CE)-based activity assays and HRMS. Moreover, to accurately explain enzyme modulation mechanism, it is imperative to complement binding assays with catalytic activity ones.


Assuntos
Lipase/metabolismo , Extratos Pancreáticos/metabolismo , Animais , Hidrólise , Ligantes , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Suínos
8.
Analyst ; 146(4): 1386-1401, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33404014

RESUMO

The search for novel pancreatic lipase (PL) inhibitors has gained increasing attention in recent years. For the first time, a dual detection capillary electrophoresis (CE)-based homogeneous lipase assay was developed employing both the offline and online reaction modes. The hydrolysis of 4-nitrophenyl butyrate (4-NPB) catalyzed by PL into 4-nitrophenol and butyrate was monitored by spectrophotometric and conductimetric detection, respectively. The assays presented several advantages such as economy in consumption (few tens of nanoliters for online assays to few tens of microliters for offline assays), no modification of lipase, rapidity (<10 min) and versatility. Tris/MOPS (10 mM, pH 6.6) was used as the background electrolyte and the incubation buffer for enzymatic reactions. We confirmed that in the conditions of the study (small substrate 4-NPB, 37 °C, pH 6.6), the PL was active even in the absence of dipalmitoylphosphatidylcholine (DPPC) vesicles, generally used to mimic the lipid-water interface. This was confirmed by the maximum velocity (Vmax) and the Michaelis-Menten constant (Km) values that were the same order of magnitude in the absence and presence of DPPC. The developed method was used to screen crude aqueous plant extracts and purified compounds. We were able to identify the promising PL inhibition of hawthorn leaf herbal infusions at 1 mg mL-1 (37%) and PL activation by fresh and dry hawthorn flowers (∼24%). Additionally, two triterpenoids purified from extracts of oakwood were identified for the first time as potent PL inhibitors demonstrating 51 and 58% inhibition at 1 mg mL-1, respectively.


Assuntos
Eletroforese Capilar , Lipase , Hidrólise , Cinética , Lipase/metabolismo , Espectrofotometria
9.
Biochim Biophys Acta Gen Subj ; 1865(3): 129837, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33378708

RESUMO

In this paper, we introduce a comprehensive kinetic model describing the enzymatic cleavage of hyaluronan (HA) by bovine testicular hyaluronidase (BTH). Our theory focuses specifically on the late stage of the hydrolysis, where the concentrations of a limited number of oligomers may be determined experimentally with accuracy as functions of time. The present model was applied to fit different experimental sets of kinetic data collected by capillary electrophoresis at two HA concentrations and three concentrations of PEG crowder (0, 10, 17% w/w). Our theory seems to apply universally, irrespective of HA concentration and crowding conditions, reproducing to an excellent extent the time evolution of the individual molar fractions of oligomers. Remarkably, we found that the reaction mechanism in the late degradation stage essentially reduces to the cleavage or transfer of active dimers. While the recombination of dimers is the fastest reaction, the rate-limiting step turns out to be invariably the hydrolysis of hexamers. Crowding, HA itself or other inert, volume-excluding agents, clearly boosts recombination events and concomitantly slows down all fragmentation pathways. Overall, our results bring a novel and comprehensive quantitative insight into the complex reaction mechanism underlying enzymatic HA degradation. Importantly, rationalizing the effect of crowding not only brings the intricate conditions of in-vivo settings a little closer, but also emerges as a powerful tool to help pinpointing relevant kinetic pathways in complex systems.


Assuntos
Ácido Hialurônico/química , Hialuronoglucosaminidase/química , Animais , Bovinos , Dimerização , Ensaios Enzimáticos , Hialuronoglucosaminidase/isolamento & purificação , Hidrólise , Cinética , Masculino , Polietilenoglicóis/química , Testículo/química
10.
Foods ; 9(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081198

RESUMO

The water-based extraction of bioactive components from flavonoid-rich medicinal plants is a key step that should be better investigated. This is especially true when dealing with easy-to-use home-made conditions of extractions, which are known to be a bottleneck in the course for a better control and optimization of the daily uptake of active components from medicinal plants. In this work, the water-based extraction of Blackcurrant (Ribes nigrum) leaves (BC) and Chrysanthellum americanum (CA), known to have complementary pharmacological properties, was studied and compared with a previous work performed on the extraction of Hawthorn (Crataegus, HAW). Various extraction modes in water (infusion, percolation, maceration, ultrasounds, microwaves) were compared for the extraction of bioactive principles contained in BC and CA in terms of extraction yield, of amount of flavonoids, phenolic compounds, and proanthocyanidin oligomers, and of UHPLC profiles of the extracted compounds. The qualitative and quantitative aspects of the extraction, in addition to the kinetic of extraction, were studied. The optimized easy-to-use-at-home extraction protocol developed for HAW was found very efficient to easily extract bioactive components from BC and CA plants. UHPLC-ESI-MS and high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were also implemented to get more qualitative information on the specific and common chemical compositions of the three plants (including HAW). Their antihyaluronidase, antioxidant, and antihypertensive activities were also determined and compared, demonstrating similar activities as the reference compound for some of these plants.

11.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
12.
Anal Bioanal Chem ; 412(17): 4195-4207, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377866

RESUMO

To mimic the activity of hyaluronidase in natural environment, the hydrolysis of hyaluronic acid (HA) by hyaluronidase was investigated for the first time in the presence of crowding agents using capillary electrophoresis (CE) as a simple and reliable technique for conducting enzymatic assay. Polyethylene glycol (PEG) 6000 was selected as a model crowder and the hyaluronic acid degradation catalyzed by bovine testes hyaluronidase (BTH) was carried out at different PEG concentrations (0%, 10%, and 17%). After optimization of the CE analytical method and enzymatic assay, the degradation products were monitored at different HA concentrations. At 10% of PEG and 0.3 mg mL-1 of HA, the activity of the enzyme was significantly reduced showing inconvenient interactions of PEG with the hyaluronidase blocking the release of hydrolysis products. A similar reduction of hyaluronidase activity was observed at 1 mg mL-1 of HA due to the presumable formation of the BTH-substrate complex. The experimental curves obtained by CE also evidence that the overall kinetics are governed by the hydrolysis of hexasaccharide intermediates. Finally, the effect of PEG on hyaluronidase activity was evaluated in the presence of natural or synthetic inhibitors. Our results show a significant difference of the inhibitors' affinity toward hyaluronidase in the presence of PEG. Surprisingly, the presence of the crowding agent results in a loss of the inhibition effect of small polycyclic inhibitors, while larger charged inhibitors were less affected. In this work, CE analyses confirm the importance of mimicking the cellular environment for the discovery and development of reliable inhibitors. Graphical abstract.


Assuntos
Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Hialuronoglucosaminidase/metabolismo , Animais , Bovinos , Ácido Hialurônico/metabolismo , Hidrólise , Cinética , Masculino , Polietilenoglicóis/metabolismo , Testículo/enzimologia
13.
Anal Chim Acta ; 1085: 117-125, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31522725

RESUMO

Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few µL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.


Assuntos
Glucosinolatos/metabolismo , Glicosídeo Hidrolases/análise , Ouro/metabolismo , Nanopartículas Metálicas/química , Compostos de Sulfidrila/metabolismo , Biocatálise , Condutividade Elétrica , Eletroforese Capilar , Glucosinolatos/química , Glicosídeo Hidrolases/metabolismo , Ouro/química , Hidrólise , Estrutura Molecular , Espectrofotometria Ultravioleta , Especificidade por Substrato , Compostos de Sulfidrila/química
14.
Bioconjug Chem ; 30(5): 1385-1394, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933500

RESUMO

Fluorescein isothiocyanate (FITC) is one of the most extensively used fluorescent probes for the labeling of biomolecules. The isothiocyanate function reacts with lysine residues of proteins to provide a chemically stable thiourea linkage without releasing any byproduct. However, diversification of isothiocyanate-based reagents is still hampered by the lack of mild conditions to generate isothiocyanate chemical functions, as well as by their poor stability and limited solutions available to increase water solubility, restricting the use of isothiocyanate labeling to highly water-soluble fluorophores. Inspired by plant biological processes, we report a safe and biocompatible myrosinase-assisted in situ formation of isothiocyanate conjugates from a highly water-soluble and stable glucosinolate precursor. This method was applied for the fluorescence labeling of a plasmatic protein and fluorescence imaging of living cells.


Assuntos
Fluoresceína-5-Isotiocianato/síntese química , Corantes Fluorescentes/síntese química , Glicosídeo Hidrolases/química , Células HEK293 , Humanos , Solubilidade
15.
Carbohydr Res ; 475: 56-64, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836261

RESUMO

The activity of eukaryote hydrolase-type of hyaluronidases was studied using a miniaturized capillary electrophoresis (CE) assay developed in our laboratory. Few nanoliters of reagents are sufficient and no labeling is required for this assay. The effect of natural and original synthetic effectors of hyaluronidase was evaluated. These di- and trisaccharides from linkage region of proteoglycans were synthesized in 30-40 steps from monomeric units using classical protection, deprotection, glycosylation and deoxygenation reactions. The influence of the chain length (di/trisaccharide), the modification type (methoxy/deoxy) and its position (2/4/6) was studied. The inhibition and/or activation percentages were determined at two concentrations of effectors; 0.2 mM and 2 mM. The half maximal effective concentration (EC50) values were evaluated (n = 2) for the most effective inhibitors (∼1 mM) and activators (∼0.2 mM). Results showed that hyaluronidase was mostly inhibited in a concentration-dependent fashion by a deoxy modification and activated by a methoxy modification. Trisaccharides were found to be more effective on hyaluronidase activity than disaccharides. Position 4 was found to be more favorable for hyaluronidase activity than position 6 and the activity in position 2 was negligible. For a better understanding of the enzyme function mode, the inhibition constant (Ki) was also evaluated by CE (Ki ∼ 2 mM). These results are of great interest especially as few activators of hyaluronidase are presented in the literature.


Assuntos
Eletroforese Capilar , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Oligossacarídeos/farmacologia , Animais , Configuração de Carboidratos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Hialuronoglucosaminidase/metabolismo , Oligossacarídeos/química , Relação Estrutura-Atividade
16.
Anal Chim Acta ; 1049: 115-122, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30612642

RESUMO

Nucleosides and their analogues play a crucial role in the treatment of several diseases including cancers and viral infections. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphates form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. It is thus mandatory to develop an easy, rapid, reliable and sensitive enzyme activity tests. In this study, we monitored the three-step phosphorylation of thymidine to thymidine triphosphate respectively by (1) human thymidine kinase 1 (hTK1), (2) human thymidylate kinase (hTMPK) and (3) human nucleoside diphosphate kinase (hNDPK). Free and immobilized kinase activities were characterized by using the Michaelis-Menten kinetic model. Flow Injection Analysis (FIA) with High-Resolution Mass Spectrometry (HRMS) was used as well as capillary electrophoresis (CE) with UV detection. The three-step cascade phosphorylation of thymidine was also monitored. FIA-HRMS allows a sensitive and rapid evaluation of the phosphorylation process. This study proposes simple, rapid, efficient and sensitive methods for enzyme kinetic studies and successive phosphorylation monitoring with immobilized enzymes.


Assuntos
Enzimas Imobilizadas/química , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Fosfato Quinase/química , Timidina Quinase/química , Timidina/química , Análise de Injeção de Fluxo/métodos , Humanos , Cinética , Espectrometria de Massas/métodos , Nanopartículas/química , Fosforilação
17.
Anal Chim Acta ; 1020: 134-141, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29655424

RESUMO

There have been many efforts to search for affordable and efficient cosmetic ingredients from natural sources and to evaluate their bioactivities using eco-responsible tools. Hyaluronidase, elastase and collagenase are responsible for the degradation of the main components of the extracellular matrix, namely the hyaluronic acid, elastin and collagen, respectively. The aim of this work was to develop a single capillary electrophoresis method to monitor simultaneously the activities of these three enzymes, without reactant immobilization or radioactivity use. The developed approach was used to evaluate the bioactivity of the red alga Jania rubens after microwave- or electrochemical-assisted extraction. For this purpose, the incubation time, the reactant concentrations, the separation buffer and the detection system were carefully chosen. CE with double detection system, LIF and HRMS connected in series, was used to ensure the simultaneous analysis of the substrates and products of the three enzymatic reactions. The optimized enzymatic conditions allowed the use of the same protocol to assess the 3 enzyme activities. These conditions consisted of 10 min pre-incubation of the enzyme (with alga extract) at 37 °C; 10 min incubation with the substrate at 37 °C and 10 min stop-time at 90 °C. 1.4 nL of each reaction mixture were co-injected into a 85 cm total length capillary using short-end injection. Ammonium acetate (50 mM, pH 9.0) was used for electrophoretic separation. All substrates and products were simultaneously detected in less than 10 min with good peak symmetry and efficiency, sufficient intra-day and inter-day repeatabilities (RSD < 4.5%; n = 3) and excellent LOQ (<5 nM). The results obtained using this multiple CE-based enzymatic assay showed the significant effect of Jania rubens ethanolic extracts on elastase, hyaluronidase and the metalloproteinase MMP-1.


Assuntos
Colagenases/metabolismo , Hialuronoglucosaminidase/metabolismo , Elastase Pancreática/metabolismo , Rodófitas/metabolismo , Colágeno/química , Colágeno/metabolismo , Elastina/química , Elastina/metabolismo , Técnicas Eletroquímicas , Eletroforese Capilar , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Micro-Ondas , Estrutura Molecular , Rodófitas/química
18.
J Chromatogr A ; 1529: 1-28, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29132826

RESUMO

Elastase, collagenase, hyaluronidase and tyrosinase, are very interesting enzymes due to their direct implication in skin aging and as therapeutic hits. Different techniques can be used to study these enzymes and to evaluate the influence of effectors on their kinetics. Nowadays, analytical techniques have become frequently used tools for miniaturizing enzyme assays. The main intention of this article is to review chromatographic and electrophoretic tools that study the four enzymes above mentioned. More specifically, the use of high-performance liquid chromatography and capillary electrophoresis and their derivative techniques for monitoring these enzymes will be investigated. The advantages and limitations of these assays will also be discussed. The original use of microscale thermophoresis and thin layer chromatography in this domain will also be covered.


Assuntos
Cromatografia , Eletroforese , Ensaios Enzimáticos/instrumentação , Enzimas/análise , Colagenases/análise , Colagenases/química , Colagenases/metabolismo , Enzimas/química , Enzimas/metabolismo , Hialuronoglucosaminidase/análise , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Cinética , Monofenol Mono-Oxigenase/análise , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Oxirredução , Elastase Pancreática/análise , Elastase Pancreática/química , Elastase Pancreática/metabolismo
19.
J Chromatogr A ; 1497: 19-27, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28372836

RESUMO

Hyaluronidase degrades hyaluronic acid, the principal component of the extracellular matrix. Inhibition of this enzyme is thus expected to hinder skin aging. Brown alga Padina pavonica activity toward hyaluronidase was evaluated using capillary electrophoresis (CE)-based enzymatic assays. This green technique allows evaluation of the biological activity of the natural material in an economic manner. Pressurized liquid extraction (PLE), microwave assisted extraction (MAE), supercritical fluid extraction and electroporation extraction techniques were used. Extraction conditions were optimized to obtain cosmetically acceptable Padina pavonica extracts with the best inhibition activity. CE-based assays were conducted using only a few nanoliters of reactants, a capillary of 60cm total length and of 50µm internal diameter, +20kV voltage for separation in 50mM ammonium acetate buffer (pH 9.0) and 200nm wavelength for detection. The reaction mixture was incubated for 1h and CE analysis time was about 11min. A novel online CE-assay using transverse diffusion of laminar flow profiles for in-capillary reactant mixing allowed efficient monitoring of hyaluronidase kinetics with Km and Vmax equal to 0.46±0.04mgmL-1 and 137.1±0.3nMs-1 (r2=0.99; n=3), respectively. These values compared well with literature, which validates the assay. Water extracts obtained by PLE (60°C; 2 cycles) and MAE (60°C; 1000W; 2min) presented the highest anti-hyaluronidase activity. The half maximal effective concentration (IC50) of water PLE extract was 0.04±0.01mgmL-1 (r2=0.99; n=3). This value is comparable to the one obtained for Einsenia bicyclis phlorotannin fractions (IC50=0.03mgmL-1), which makes Padina pavonica bioactivity very promising.


Assuntos
Eletroforese Capilar/métodos , Hialuronoglucosaminidase/antagonistas & inibidores , Extração Líquido-Líquido/métodos , Micro-Ondas , Phaeophyceae/química , Pressão , Alga Marinha/química , Água/química , Cromatografia com Fluido Supercrítico , Difusão , Eletroforese Capilar/normas , Eletroporação , Concentração Inibidora 50 , Cinética , Reprodutibilidade dos Testes
20.
Environ Sci Pollut Res Int ; 24(13): 12293-12300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28357792

RESUMO

A commercial molecularly imprinted polymer (MIP) dedicated to glyphosate (GLY) and its main metabolite, aminomethylphosphonic acid (AMPA), was lately assessed as "POCIS-like" sampler on mineral water. The obtained results were encouraging with 111 and 122 mL day-1 as sampling rates for GLY and AMPA, respectively. Therefore, before applying this passive sampler to environmental waters, the commercial phase was tested on different water matrices as a solid-phase extraction (SPE) device. The SPE protocol was carried on 250 mg of MIP with the following three steps: conditioning by Milli-Q water, loading of the sample (15 mL), and elution of the analytes by 4 mL 0.1 M HCl that were evaporated to dryness and recovered in 15 mL of the suitable solvent for analysis. This protocol was first applied to mineral water spiked by GLY and AMPA at environmental concentration levels (25-750 ng L-1). Analyses were carried out by ultra-performance liquid chromatography hyphenated to tandem mass after derivatization of GLY and AMPA by 9-fluorenylmethylchloroformate. The linear correlation between concentrations measured with and without SPE on MIP was proved.Furthermore, other extractions showed that high concentrations of metal ion interferents (lead(II), cadmium(II), and zinc(II)) in groundwaters did not reduce SPE performance of the MIP.Then, concentration assays were undertaken and brought noteworthy results, such as the recovery of 80% GLY and AMPA from groundwater spiked at 10 ng L-1 and concentrated 100 times. For this purpose, ion exclusion chromatography hyphenated to mass was applied without previous derivatization of the analytes. The same concentration factor and analytical method were applied to 100 ng L-1 spiked sea water with recoveries of 96% for GLY and 121% for AMPA.


Assuntos
Polímeros/química , Espectrometria de Massas em Tandem , Fluorenos , Glicina/análogos & derivados , Impressão Molecular , Extração em Fase Sólida , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...