Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39186885

RESUMO

The aim of this study was to develop and validate a densitometric High-Performance Thin-Layer Chromatography (HPTLC) method for the simultaneous quantification of quercetin (Q) and kaempferol (K) in Hibiscus mutabilis leaf extracts. The analyses were performed on silica gel 60 F254 plates using a mobile phase composed of toluene, formic acid, and ethyl acetate (6:0.4:4, v/v/v). Detection was carried out at a wavelength of 272 nm using a deuterium and tungsten light source. The method exhibited excellent linearity over the concentration range of 100-600 ng/spot for quercetin and 500-3000 ng/spot for kaempferol, with determination coefficients (r2) of 0.9989 and 0.9973, respectively. The method showed no interferences from the plant matrix. The relative standard deviation (RSD) values for intra- and inter-day precision were less than 2% for both flavonoids. Recovery rates ranged from 97.69% to 99.20% for quercetin and from 89.91% to 95.87% for kaempferol. The limits of detection (LOD) were 190.23 ng/spot for quercetin and 187.23 ng/spot for kaempferol, while the limits of quantification (LOQ) were 570.10 ng/spot for quercetin and 566.12 ng/spot for kaempferol. This validated HPTLC method is reliable, precise, and accurate, making it suitable for the quality control of Hibiscus mutabilis leaf extracts. The study's findings can be broadly applied to the quality control of herbal products, pharmacological research, and the development of nutraceuticals. The method's ability to provide rapid and accurate quantification makes it an invaluable tool for researchers across various disciplines.

2.
Health Sci Rev (Oxf) ; 4: 100044, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875514

RESUMO

Introduction: Human species is confronting with a gigantic global COVID-19 pandemic. Initially, it was observed in Wuhan, China, and the COVID-19 cases spread across the globe with lightning speed and resulted in the 21st century pandemic. If scientific reports are taken care of, it is noteworthy that this virus possesses more specific characteristics due to its structure. The distinctive structure has a higher binding affinity with angiotensin-converting enzyme 2 (ACE2) protein, and this is used as an access point to gain access to hosts. Methods: A complete literature search was conducted using PubMed, Google Scholar, SciFinder, and deep-diving Google Search using keywords such as "Pregnancy, COVID-19, Newborn, Fetus, Coronavirus 2019, Neonate, Pregnant women, and vertical transmission". Result and discussion: The SARS-CoV-2 virus is unlike its former analogs: SARS-CoV, and MERS-CoV in 2002 and 2012, respectively, or anything mankind has faced earlier concerning viciousness, global spread, and gravity of a causative agent. The current review has delved into articles published in various journals worldwide including the latest studies on the impact of COVID-19 on pregnant women and neonates and has discussed complications and challenges, psychological health, immunological response, vertical transmission, concurrent disorders, vaccine debate, management recommendations, recent news of the approval of COVID-19 vaccine for 6 months and older babies, and future perspectives.

3.
J Environ Sci (China) ; 94: 52-63, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563487

RESUMO

Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive bifunctional biopolymer nanocomposite (HAZ) of humic acid with incorporating aluminum zirconium bimetallic oxide by deep freeze-drying method. Fast nucleation and interconnection of nanoparticles form a highly porous network because of sublimation of frozen HAZ. This duo nanocomposite has efficiently worked for fluoride removal and showed potent antibacterial activity against the Escherichia coli Gram-negative and Staphylococcus aureus Gram-positive bacteria. The X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the hydroxyl groups act as a pivot in the ion exchange process of adsorption, each element of bimetallic oxide primarily takes part in the adsorption mechanism. The maximum adsorption capacity of the adsorbent was 180.62 mg/g at pH seven. Thermodynamic parameters like Gibbs free energy change (ΔG0), entropy (ΔS0), and enthalpy (ΔH0) indicate that the process was endothermic, feasible, and taken place by a chemisorption mechanism. This is the first novel freeze-dried bifunctional biopolymer nanocomposite composed of humic acid natural polymer incorporated with Al-Zr metal oxide, and it exhibited three times higher adsorption efficacy with excellent antibacterial action at a concentration of 5 µg/mL of the nanocomposite.


Assuntos
Fluoretos , Nanocompostos , Adsorção , Antibacterianos , Biopolímeros , Humanos , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
4.
Environ Pollut ; 258: 113773, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31864079

RESUMO

Excess fluoride concentration in drinking water is a global issue, as this has an adverse effect on human health. Several adsorbents have been synthesized from natural raw material to remove fluoride from water. Reported adsorbents have some problems with the leaching of metal ions, fewer adsorption sites, and low adsorption capacity. Therefore, to address this, an effective biomaterial derived from the Luffa cylindrica (LC), containing many active sites, was integrated with a nano form of cerium oxide to form a robust, biocompatible, highly porous, and reusable LC-Ce adsorbent. This synthesized biosorbent offers better interaction between the active sites of LC-Ce and fluoride, resulting in higher adsorption capacity. Several factors, influence the adsorption process, were studied by a central composite design (CCD) model of statistical analysis. Langmuir's and Freundlich's models well describe the adsorption and kinetics governed by the pseudo-second-order model. The maximum monolayer adsorption capacity was found to be 212 and 52.63 mg/g for LC-Ce and LC, respectively determined by the Langmuir model. Detailed XPS and FTIR analyses revealed the underlying mechanism of fluoride adsorption via ion-exchange, electrostatic interaction, H-bonding, and ion-pair formation. All the results indicate that LC-Ce could serve as a suitable adsorbent for efficient fluoride removal (80-85%).


Assuntos
Cério , Fluoretos/isolamento & purificação , Nanocompostos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Adsorção , Materiais Biocompatíveis , Água Potável , Concentração de Íons de Hidrogênio , Cinética , Luffa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA