Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 773: 145030, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940711

RESUMO

Air pollution associated with wildfire smoke transport during the summer can significantly affect ozone (O3) and particulate matter (PM) concentrations, even in heavily populated areas like New York City (NYC). Here, we use observations from aircraft, ground-based lidar, in-situ analyzers and satellite to study and assess wildfire smoke transport, vertical distribution, optical properties, and potential impact on air quality in the NYC urban and coastal areas during the summer 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We investigate an episode of dense smoke transported and mixed into the planetary boundary layer (PBL) on August 15-17, 2018. The horizontal advection of the smoke is shown to be characterized with the prevailing northwest winds in the PBL (velocity > 10 m/s) based on Doppler wind lidar measurements. The wildfire sources and smoke transport paths from the northwest US/Canada to northeast US are identified from the NOAA hazard mapping system (HMS) fires and smoke product and NOAA-HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory analysis. The smoke particles are distinguished from the urban aerosols by showing larger lidar-ratio (70-sr at 532-nm) and smaller depolarization ratio (0.02) at 1064-nm using the NASA High Altitude Lidar Observatory (HALO) airborne high-spectral resolution lidar (HSRL) measurements. The extinction-related angstrom exponents in the near-infrared (IR at 1020-1640 nm) and Ultraviolet (UV at 340-440 nm) from NASA-Aerosol Robotic Network (AERONET) product show a reverse variation trend along the smoke loadings, and their absolute differences indicate strong correlation with the smoke-Aerosol Optical Depth (AOD) (R > 0.94). We show that the aloft smoke plumes can contribute as much as 60-70% to the column AOD and that concurrent high-loadings of O3, carbon monoxide (CO), and black carbon (BC) were found in the elevated smoke layers from the University of Maryland (UMD) aircraft in-situ observations. Meanwhile, the surface PM2.5 (PM with diameter ≤ 2.5 µm), organic carbon (OC) and CO measurements show coincident and sharp increase (e.g., PM2.5 from 5 µg/m3 before the plume intrusion to ~30 µg/m3) with the onset of the plume intrusions into the PBL along with hourly O3 exceedances in the NYC region. We further evaluate the NOAA-National Air Quality Forecasting Capability (NAQFC) model PBL-height, PM2.5, and O3 with the observations and demonstrate good consistency near the ground during the convective PBL period, but significant bias at other times. The aloft smoke layers are sometimes missed by the model.

2.
Surv Geophys ; 38(6): 1445-1482, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997843

RESUMO

A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

3.
Opt Express ; 23(11): A582-93, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072883

RESUMO

This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-µm CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively. For the case of intervening thin cirrus clouds with an average cloud optical depth of about 0.16 over an arid/semi-arid area, the CO2 column measurements from 12.2 km altitude were found to be consistent with the cloud free conditions with a lower precision due to the additional optical attenuation of the thin clouds. The clear sky precision for this flight campaign case was about 0.72% for a 0.1-s integration, which was close to previously reported flight campaign results. For a vegetated area and lidar path lengths of 8 to 12 km, the precision of the measured differential absorption optical depths to the surface was 1.3 - 2.2% for 0.1-s integration. The precision of the CO2 column measurements to thick clouds with reflectance about 1/10 of that of the surface was about a factor of 2 to 3 lower than that to the surface owing to weaker lidar returns from clouds and a smaller CO2 differential absorption optical depth compared to that for the entire column.

4.
Opt Lett ; 39(24): 6981-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503046

RESUMO

An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.

5.
Opt Lett ; 39(20): 6078-81, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361160

RESUMO

An interpolation method is described for range measurements of high precision and altimetry using repeating intensity-modulated continuous wave (IM-CW) lidar waveforms, where the range is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. The computation of this processing is marginally greater than the correlation itself, as it only involves reordering of the correlation in the frequency domain, which makes it possible to implement this in a real time application. It is shown through theoretical arguments and flight-testing that this is a viable method for high-speed interpolated range measurements. Standard deviation is 0.75 m over water with only 350 mw of transmitted power at 2600 m.

6.
Appl Opt ; 53(5): 816-29, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663259

RESUMO

In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth.

7.
Opt Express ; 22 Suppl 6: A1634-40, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607320

RESUMO

A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO(2) optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.


Assuntos
Artefatos , Atmosfera/química , Dióxido de Carbono/análise , Fotometria/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Armazenamento e Recuperação da Informação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Appl Opt ; 52(29): 7062-77, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24217721

RESUMO

The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 µm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the τd measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the τd measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10 pm, respectively, from the CO(2) line center at 1571.112 nm. The CO(2) column bias errors introduced by the thin clouds are ≤0.1% for cloud optical depth ≤0.4, but they could reach ∼0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO(2) column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission.

9.
Opt Express ; 21(25): 30415-32, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514619

RESUMO

Methane is an efficient absorber of infrared radiation and a potent greenhouse gas with a warming potential 72 times greater than carbon dioxide on a per molecule basis. Development of methane active remote sensing capability using the differential absorption lidar (DIAL) technique enables scientific assessments of the gas emission and impacts on the climate. A performance evaluation of a pulsed DIAL system for monitoring atmospheric methane is presented. This system leverages a robust injection-seeded pulsed Nd:YAG pumped Optical Parametric Oscillator (OPO) laser technology operating in the 1.645 µm spectral band. The system also leverages an efficient low noise, commercially available, InGaAs avalanche photo-detector (APD). Lidar signals and error budget are analyzed for system operation on ground in the range-resolved DIAL mode and from airborne platforms in the integrated path DIAL (IPDA) mode. Results indicate system capability of measuring methane concentration profiles with <1.0% total error up to 4.5 km range with 5 minute averaging from ground. For airborne IPDA, the total error in the column dry mixing ratio is less than 0.3% with 0.1 sec average using ground returns. This system has a unique capability of combining signals from the atmospheric scattering from layers above the surface with ground return signals, which provides methane column measurement between the atmospheric scattering layer and the ground directly. In such case 0.5% and 1.2% total errors are achieved with 10 sec average from airborne platforms at 8 km and 15.24 km altitudes, respectively. Due to the pulsed nature of the transmitter, the system is relatively insensitive to aerosol and cloud interferences. Such DIAL system would be ideal for investigating high latitude methane releases over polar ice sheets, permafrost regions, wetlands, and over ocean during day and night. This system would have commercial potential for fossil fuel leaks detection and industrial monitoring applications.


Assuntos
Atmosfera/análise , Atmosfera/química , Lasers , Metano/análise , Radar/instrumentação , Refratometria/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
10.
Opt Express ; 20(22): 25137-51, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187280

RESUMO

An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

11.
Appl Opt ; 47(4): 548-55, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18239715

RESUMO

Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO(2)) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 microm spectral region that contains three CO(2) absorption lines and is used for aboveground atmospheric CO(2) concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.0032-2.0055 mum spectral region that contains five CO(2) absorption lines for underground CO(2) soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO(2) release facility. A 0.3 ton CO(2)/day injection experiment was performed from 3-10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO(2) concentration of 618 parts per million (ppm) over the CO(2) injection site compared with an average background atmospheric CO(2) concentration of 448 ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO(2) soil gas concentration of 100,000 ppm during the CO(2) injection, a factor of 25 greater than the measured background CO(2) soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring.

12.
Appl Opt ; 46(15): 3007-12, 2007 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-17514251

RESUMO

An imaging lidar instrument with the capability of measuring the frequency response of a backscattered return signal up to 3.6 kHz is demonstrated. The instrument uses a commercial microchip frequency-doubled pulsed Nd:YAG laser with a 7.2 kHz pulse repetition rate, a pulse duration of less than 1 ns, and a pulse energy of greater than 10 microJ. A 15.2 cm commercial telescope is used to collect the backscattered signal, and a photomultiplier tube is used to monitor the scattered light. This instrument is designed for range- and angle-resolved optical detection of honeybees for explosives and land-mine detection. The instrument is capable of distinguishing between the scattered light from honeybees and other sources through the frequency content of the return signal caused by the wing-beat modulation of the backscattered light. Detection of honeybees near a bee hive and spatial mapping of honeybee densities near feeders are demonstrated.

13.
Appl Opt ; 45(35): 9013-20, 2006 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17119602

RESUMO

The continuous tuning range of an external-cavity diode laser can be extended by making small corrections to the external-cavity length through an electronic feedback loop so that the cavity resonance condition is maintained as the laser wavelength is tuned. By maintaining the cavity resonance condition as the laser is tuned, the mode hops that typically limit the continuous tuning range of the external-cavity diode laser are eliminated. We present the design of a simple external-cavity diode laser based on the Littman-Metcalf external-cavity configuration that has a measured continuous tuning range of 1 GHz without an electronic feedback loop. To include the electronic feedback loop, a small sinusoidal signal is added to the drive current of the laser diode creating a small oscillation of the laser power. By comparing the phase of the modulated optical power with the phase of the sinusoidal drive signal using a lock-in amplifier, an error signal is created and used in an electronic feedback loop to control the external-cavity length. With electronic feedback, we find that the continuous tuning range can be extended to over 65 GHz. This occurs because the electronic feedback maintains the cavity resonance condition as the laser is tuned. An experimental demonstration of this extended tuning range is presented in which the external-cavity diode laser is tuned through an absorption feature of diatomic oxygen near 760 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...