Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273143

RESUMO

BackgroundVaccination has helped to mitigate the COVID-19 pandemic. Ten traditional and novel vaccines have been listed by the World Health Organization for emergency use. Additional alternative approaches may better address ongoing vaccination globally, where there remains an inequity in vaccine distribution. GBP510 is a recombinant protein vaccine, which consists of self-assembling, two-component nanoparticles displaying the receptor-binding domain (RBD) in a highly immunogenic array. MethodsWe conducted a randomized, placebo-controlled, observer-blinded, phase 1/2 trial to evaluate the safety and immunogenicity of GBP510 (2-doses at a 28-day interval) adjuvanted with or without AS03 in adults aged 19-85 years. The main outcomes included solicited and unsolicited adverse events; anti-SARS-CoV-2 RBD IgG antibody and neutralizing antibody responses; T-cell immune responses. FindingsOf 328 participants who underwent randomization, 327 participants received at least 1 dose of vaccine. Each received either 10 g GBP510 adjuvanted with AS03 (n = 101), 10 g unadjuvanted GBP510 (n = 10), 25 g GBP510 adjuvanted with AS03 (n = 104), 25 g unadjuvanted GBP510 (n = 51), or placebo (n = 61). Most solicited adverse events were mild-to-moderate in severity and transient. Higher reactogenicity was observed in the GBP510 adjuvanted with AS03 groups compared to the non-adjuvanted and placebo groups. Reactogenicity was higher post-dose 2 compared to post-dose 1, particularly for systemic adverse events. The geometric mean concentrations of anti-SARS-CoV-2-RBD IgG antibody reached 2163.6/2599.2 BAU/mL in GBP510 adjuvanted with AS03 recipients (10 g/25 g) by 14 days after the second dose. Two-dose vaccination with 10 g or 25 g GBP510 adjuvanted with AS03 induced high titers of neutralizing antibody via pseudovirus (1369.0/1431.5 IU/mL) and wild-type virus (949.8/861.0 IU/mL) assays. InterpretationGBP510 adjuvanted with AS03 was well tolerated and highly immunogenic. These results support further development of the vaccine candidate, which is currently being evaluated in Phase 3. FundingCoalition for Epidemic Preparedness Innovations RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed for research articles published by December 31, 2021, using the terms "COVID-19" or "SARS-CoV-2," "vaccine," and "clinical trial." In previously reported randomized clinical trials, we found that mRNA vaccines were more immunogenic than adenovirus-vectored vaccines. Solicited adverse events were more frequent and more severe in intensity after the first dose compared to the second dose for adenovirus-vectored vaccines, whereas they increased after the second dose of mRNA or recombinant spike-protein nanoparticle vaccines. Added value of this studyThis is the first human study evaluating the immunogenicity and safety of recombinant SARS-CoV-2 protein nanoparticle with and without adjuvant AS03, designed to elicit functional cross-protective responses via receptor-binding domain (RBD). Both 10 and 25 g of GBP510 with AS03 formulations were well tolerated with an acceptable safety profile. Potent humoral immune responses against the SARS-CoV-2 RBD were induced and peaked by day 42 (14 days after the second dose). In addition, GBP510 adjuvanted with AS03 elicited a noticeable Th1 response, with production of IFN-{gamma}, TNF-, and IL-2. IL-4 was inconsistent and IL-5 nearly inexistent response across all groups. Implications of the available evidenceThe results from this phase 1/2 trial indicate that GBP510 adjuvanted with AS03 has an acceptable safety profile with no vaccine-related serious adverse events. Two-dose immunization with GBP510 adjuvanted with AS03 induced potent humoral and cellular immune responses against SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-111526

RESUMO

Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N=80 samples from persons with RT-PCR confirmed SARS-CoV2 infection), and a specificity of 97.2% (N=106 control samples).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA