Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7994): 253-258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200292

RESUMO

Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.

2.
Nat Astron ; 7(9): 1098-1107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736027

RESUMO

Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.

3.
Nature ; 606(7912): 59-63, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585234

RESUMO

Reservoirs of dense atomic gas (primarily hydrogen) contain approximately 90 per cent of the neutral gas at a redshift of 3, and contribute to between 2 and 3 per cent of the total baryons in the Universe1-4. These 'damped Lyman α systems'-so called because they absorb Lyman α photons within and from background sources-have been studied for decades, but only through absorption lines present in the spectra of background quasars and γ-ray bursts5-10. Such pencil beams do not constrain the physical extent of the systems. Here we report integral-field spectroscopy of a bright, gravitationally lensed galaxy at a redshift of 2.7 with two foreground damped Lyman α systems. These systems are greater than 238 kiloparsecs squared in extent, with column densities of neutral hydrogen varying by more than an order of magnitude on scales of less than 3 kiloparsecs. The mean column densities are between 1020.46 and 1020.84 centimetres squared and the total masses are greater than 5.5 × 108-1.4 × 109 times the mass of the Sun, showing that they contain the necessary fuel for the next generation of star formation, consistent with relatively massive, low-luminosity primeval galaxies at redshifts greater than 2.

4.
Nature ; 587(7834): 387-391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208957

RESUMO

Stellar mergers are a brief but common phase in the evolution of binary star systems1,2. These events have many astrophysical implications; for example, they may lead to the creation of atypical stars (such as magnetic stars3, blue stragglers4 and rapid rotators5), they play an important part in our interpretation of stellar populations6 and they represent formation channels of compact-object mergers7. Although a handful of stellar mergers have been observed directly8,9, the central remnants of these events were shrouded by an opaque shell of dust and molecules10, making it impossible to observe their final state (for example, as a single merged star or a tighter, surviving binary11). Here we report observations of an unusual, ring-shaped ultraviolet ('blue') nebula and the star at its centre, TYC 2597-735-1. The nebula has two opposing fronts, suggesting a bipolar outflow of material from TYC 2597-735-1. The spectrum of TYC 2597-735-1 and its proximity to the Galactic plane suggest that it is an old star, yet it has abnormally low surface gravity and a detectable long-term luminosity decay, which is uncharacteristic for its evolutionary stage. TYC 2597-735-1 also exhibits Hα emission, radial-velocity variations, enhanced ultraviolet radiation and excess infrared emission-signatures of dusty circumstellar disks12, stellar activity13 and accretion14. Combined with stellar evolution models, the observations suggest that TYC 2597-735-1 merged with a lower-mass companion several thousand years ago. TYC 2597-735-1 provides a look at an unobstructed stellar merger at an evolutionary stage between its dynamic onset and the theorized final equilibrium state, enabling the direct study of the merging process.

5.
Nature ; 524(7564): 192-5, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26245373

RESUMO

The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that 'cold accretion flows'--relatively cool (temperatures of the order of 10(4) kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 10(13) solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.

6.
Nature ; 448(7155): 780-3, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17700694

RESUMO

Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.

7.
Nature ; 443(7109): 308-11, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16988705

RESUMO

The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...