Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Circulation ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315434

RESUMO

BACKGROUND: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. METHODS: We quantified cell-surface trafficking of 18 796 variants in KCNH2 using a multiplexed assay of variant effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping. We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian long QT syndrome penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. RESULTS: Variant MAVE trafficking scores and automated patch clamping peak tail currents were highly correlated (Spearman rank-order ρ=0.69; n=433). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian long QT syndrome penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became nonsignificant when peak tail current and penetrance estimates were also available. The area under the receiver operator characteristic curve for 20-year event outcomes based on patient-specific sex and QTc (area under the curve, 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (area under the curve, 0.86 [0.83-0.89]) or attainable automated patch clamping peak tail current data (area under the curve, 0.84 [0.81-0.88]). CONCLUSIONS: High-throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale, whereas long QT syndrome penetrance estimates and automated patch clamping peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39243256

RESUMO

BACKGROUND: Patients with rare, pathogenic cardiomyopathy (CM) and arrhythmia variants can present with atrial fibrillation (AF). The efficacy of AF ablation in these patients is unknown. OBJECTIVE: This study tested the hypotheses that: 1) patients with a pathogenic variant in any CM or arrhythmia gene have increased recurrence following AF ablation; and 2) patients with a pathogenic variant associated with a specific gene group (arrhythmogenic left ventricular CM [ALVC], arrhythmogenic right ventricular CM, dilated CM, hypertrophic CM, or a channelopathy) have increased recurrence. METHODS: We performed a prospective, observational, cohort study of patients who underwent AF catheter ablation and whole exome sequencing. The primary outcome measure was ≥30 seconds of any atrial tachyarrhythmia that occurred after a 90-day blanking period. RESULTS: Among 1,366 participants, 109 (8.0%) had a pathogenic or likely pathogenic (P/LP) variant in a CM or arrhythmia gene. In multivariable analysis, the presence of a P/LP variant in any gene was not significantly associated with recurrence (HR 1.15; 95% CI 0.84-1.60; P = 0.53). P/LP variants in the ALVC gene group, predominantly LMNA, were associated with increased recurrence (n = 10; HR 3.75; 95% CI 1.84-7.63; P < 0.001), compared with those in the arrhythmogenic right ventricular CM, dilated CM, hypertrophic CM, and channelopathy gene groups. Participants with P/LP TTN variants (n = 46) had no difference in recurrence compared with genotype-negative-controls (HR 0.93; 95% CI 0.54-1.59; P = 0.78). CONCLUSIONS: Our results support the use of AF ablation for most patients with rare pathogenic CM or arrhythmia variants, including TTN. However, patients with ALVC variants, such as LMNA, may be at a significantly higher risk for arrhythmia recurrence.

3.
JAMA Health Forum ; 5(9): e243020, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39302670

RESUMO

This study uses health plan price transparency data to examine how negotiated rates for the same service vary within and across US payers and hospitals.


Assuntos
Negociação , Humanos , Seguro Saúde/economia , Estados Unidos
4.
Nat Commun ; 15(1): 8320, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333091

RESUMO

Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Splicing de RNA , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Splicing de RNA/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Arritmias Cardíacas/genética , Sítios de Splice de RNA/genética , Sistemas CRISPR-Cas/genética , Calibragem , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Genética , Íntrons/genética , Células HEK293
5.
Artigo em Inglês | MEDLINE | ID: mdl-39088845

RESUMO

Cerebral hemodynamics have been quantified during exercise via transcranial Doppler ultrasound, as it has high-sensitivity to movement artifacts and displays temporal superiority. Currently, limited research exists regarding how different exercise modalities and postural changes impact the cerebrovasculature across the cardiac cycle. Ten participants (4 females and 6 males) ages 20-29 completed three exercise tests (treadmill, supine, and upright cycling) to volitional fatigue. Physiological data collected included middle cerebral artery velocity (MCAv), blood pressure (BP), heart rate, and respiratory parameters. Normalized data were analyzed for variance and effect sizes were calculated to examine differences between physiological measures across the three exercise modalities. Systolic MCAv was greater during treadmill compared to supine and upright cycling (p < 0.001, (large) effect size), and greater during upright versus supine cycling (p < 0.017, (large)). Diastolic MCAv was lower during treadmill versus cycling exercise only at 60% maximal effort (p < 0.005, (moderate)) and no differences were observed between upright and supine cycling. No main effect was found for mean and diastolic BP (p > 0.05, (negligible)). Systolic BP was lower during treadmill versus supine cycling at 40% and 60% intensity (p < 0.05, (moderate-large)) and greater during supine versus upright at only 60% intensity (p < 0.003, (moderate)). The above differences were not explained by partial pressure of end-tidal carbon dioxide levels (main effect: p = 0.432). The current study demonstrates the cerebrovascular and cardiovascular systems respond heterogeneously to different exercise modalities and aspects of the cardiac cycle. As physiological data were largely similar between tests, differences associated with posture and modality are likely contributors.

6.
Health Educ Behav ; : 10901981241263577, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138808

RESUMO

BACKGROUND: Concussion education is recommended to increase concussion knowledge, beliefs, and reporting intentions. The Concussion Awareness Training Tool for Youth (CATT-Youth) is a 40-minute e-Learning module developed for high school-aged youth. AIM: The aim of the study was to evaluate changes in concussion knowledge, beliefs, and reporting intentions in high school youth from Calgary, Canada, following completion of the CATT-Youth. METHODS: This study used a modified stepped-wedge trial design. High school classes were randomly assigned to an intervention (Ix) or delayed intervention (DIx) group. Ix group participants completed a pre-CATT survey immediately followed by the CATT-Youth, then a post-CATT survey 2 to 6 weeks later. DIx group participants completed two pre-CATT surveys 2 to 6 weeks apart, with the CATT-Youth completed immediately following the second pre-CATT, then a post-CATT survey 2 to 6 weeks later. The pre-/post-CATT survey encompassed 11 subtests evaluating concussion knowledge, beliefs, and reporting intentions. Independent mixed linear regression models were conducted to examine changes in scores for each subtest. RESULTS: Participants included 454 high school students: five Ix schools (16 classes, n = 323) and two DIx schools (six classes, n = 131). The CATT-Youth significantly increased general concussion knowledge, Ix δ = 0.546/8 (95% confidence interval [CI] = [0.243, 0.849]), DIx δ = 0.728/8 (95% CI = [0.389, 1.106]), and beliefs about capabilities, Ix δ = 2.462/28 (95% CI = [1.086, 3.838]), DIx δ = 3.219/28 (95% CI = [1.594, 4.844]) for both groups. For some subtests, improvements were noted in the DIx group only. CONCLUSION: The CATT-Youth module improved concussion knowledge and beliefs about capabilities for students in both groups. Future studies should explore the utility of the CATT-Youth in changing knowledge, beliefs, and reporting intentions in high school students.

7.
Proc Natl Acad Sci U S A ; 121(28): e2403442121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968107

RESUMO

Plasmodium falciparum causes severe malaria and assembles a protein translocon (PTEX) complex at the parasitophorous vacuole membrane (PVM) of infected erythrocytes, through which several hundred proteins are exported to facilitate growth. The preceding liver stage of infection involves growth in a hepatocyte-derived PVM; however, the importance of protein export during P. falciparum liver infection remains unexplored. Here, we use the FlpL/FRT system to conditionally excise genes in P. falciparum sporozoites for functional liver-stage studies. Disruption of PTEX members ptex150 and exp2 did not affect sporozoite development in mosquitoes or infectivity for hepatocytes but attenuated liver-stage growth in humanized mice. While PTEX150 deficiency reduced fitness on day 6 postinfection by 40%, EXP2 deficiency caused 100% loss of liver parasites, demonstrating that PTEX components are required for growth in hepatocytes to differing degrees. To characterize PTEX loss-of-function mutations, we localized four liver-stage Plasmodium export element (PEXEL) proteins. P. falciparum liver specific protein 2 (LISP2), liver-stage antigen 3 (LSA3), circumsporozoite protein (CSP), and a Plasmodium berghei LISP2 reporter all localized to the periphery of P. falciparum liver stages but were not exported beyond the PVM. Expression of LISP2 and CSP but not LSA3 was reduced in ptex150-FRT and exp2-FRT liver stages, suggesting that expression of some PEXEL proteins is affected directly or indirectly by PTEX disruption. These results show that PTEX150 and EXP2 are important for P. falciparum development in hepatocytes and emphasize the emerging complexity of PEXEL protein trafficking.


Assuntos
Hepatócitos , Fígado , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Esporozoítos/metabolismo , Esporozoítos/crescimento & desenvolvimento , Camundongos , Fígado/parasitologia , Fígado/metabolismo , Humanos , Hepatócitos/parasitologia , Hepatócitos/metabolismo , Malária Falciparum/parasitologia
8.
Circ Genom Precis Med ; 17(4): e004569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38953211

RESUMO

BACKGROUND: Brugada syndrome is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging, and ≈79% of SCN5A missense variants in ClinVar are currently classified as variants of uncertain significance. Automated patch clamp technology enables high-throughput functional studies of ion channel variants and can provide evidence for variant reclassification. METHODS: An in vitro SCN5A-Brugada syndrome automated patch clamp assay was independently performed at Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute. The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. Odds of pathogenicity values were derived from the experimental results according to ClinGen Sequence Variant Interpretation recommendations. The calibrated assay was then used to study SCN5A variants of uncertain significance observed in 4 families with Brugada syndrome and other arrhythmia phenotypes associated with SCN5A loss-of-function. RESULTS: Variant channel parameters generated independently at the 2 research sites showed strong correlations, including peak INa density (R2=0.86). The assay accurately distinguished benign controls (24/25 concordant variants) from pathogenic controls (23/24 concordant variants). Odds of pathogenicity values were 0.042 for normal function and 24.0 for abnormal function, corresponding to strong evidence for both American College of Medical Genetics and Genomics/Association for Molecular Pathology benign and pathogenic functional criteria (BS3 and PS3, respectively). Application of the assay to 4 clinical SCN5A variants of uncertain significance revealed loss-of-function for 3/4 variants, enabling reclassification to likely pathogenic. CONCLUSIONS: This validated high-throughput assay provides clinical-grade functional evidence to aid the classification of current and future SCN5A-Brugada syndrome variants of uncertain significance.


Assuntos
Síndrome de Brugada , Canal de Sódio Disparado por Voltagem NAV1.5 , Síndrome de Brugada/genética , Humanos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Masculino , Feminino , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Adulto , Pessoa de Meia-Idade
9.
J Neurotrauma ; 41(13-14): 1509-1523, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38468559

RESUMO

Sport-related concussion (SRC) can impair the cerebrovasculature both acutely and chronically. Transcranial Doppler (TCD) ultrasound assessment has the potential to illuminate the mechanisms of impairment and provide an objective evaluation of SRC. The current systematic review investigated studies employing TCD ultrasound assessment of intracranial arteries across three broad categories of cerebrovascular regulation: neurovascular coupling (NVC), cerebrovascular reactivity (CVR), and dynamic cerebral autoregulation (dCA). The current review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42021275627). The search strategy was applied to PubMed, as this database indexes all biomedical journals. Original articles on TCD for athletes with medically diagnosed SRC were included. Title/abstract and full-text screening were completed by three authors. Two authors completed data extraction and risk of bias using the Methodological Index for Non-Randomized Studies and Scottish Intercollegiate Guideline Network checklists. Of the 141 articles identified, 14 met the eligibility criteria. One article used an NVC challenge, eight assessed CVR, and six investigated dCA. Methodologies varied widely among studies, and results were heterogeneous. There was evidence of cerebrovascular impairment in all three domains roughly 2 days post-SRC, but the magnitude and recovery of these impairments were not clear. There was evidence that clinical symptom resolution occurred before cerebrovascular function, indicating that physiological deficits may persist despite clinical recovery and return to play. Collectively, this emphasizes an opportunity for the use of TCD to illuminate the cerebrovascular deficits caused by SRC. It also highlights that there is need for consistent methodological rigor when employing TCD in a SRC population.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Ultrassonografia Doppler Transcraniana , Humanos , Ultrassonografia Doppler Transcraniana/métodos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia
10.
medRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38370760

RESUMO

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by KCNH2. Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance. Here, we sought to test whether variant-specific information, primarily from high-throughput functional assays, could improve both classification and cardiac event risk stratification in a large, harmonized cohort of KCNH2 missense variant heterozygotes. Methods: We quantified cell-surface trafficking of 18,796 variants in KCNH2 using a Multiplexed Assay of Variant Effect (MAVE). We recorded KCNH2 current density for 533 variants by automated patch clamping (APC). We calibrated the strength of evidence of MAVE data according to ClinGen guidelines. We deeply phenotyped 1,458 patients with KCNH2 missense variants, including QTc, cardiac event history, and mortality. We correlated variant functional data and Bayesian LQTS penetrance estimates with cohort phenotypes and assessed hazard ratios for cardiac events. Results: Variant MAVE trafficking scores and APC peak tail currents were highly correlated (Spearman Rank-order ρ = 0.69). The MAVE data were found to provide up to pathogenic very strong evidence for severe loss-of-function variants. In the cohort, both functional assays and Bayesian LQTS penetrance estimates were significantly predictive of cardiac events when independently modeled with patient sex and adjusted QT interval (QTc); however, MAVE data became non-significant when peak-tail current and penetrance estimates were also available. The area under the ROC for 20-year event outcomes based on patient-specific sex and QTc (AUC 0.80 [0.76-0.83]) was improved with prospectively available penetrance scores conditioned on MAVE (AUC 0.86 [0.83-0.89]) or attainable APC peak tail current data (AUC 0.84 [0.81-0.88]). Conclusion: High throughput KCNH2 variant MAVE data meaningfully contribute to variant classification at scale while LQTS penetrance estimates and APC peak tail current measurements meaningfully contribute to risk stratification of cardiac events in patients with heterozygous KCNH2 missense variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA