Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Cytogenet ; 16(1): 6, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37183244

RESUMO

Trisomy 21 (Down syndrome) is the most common autosomal aneuploidy among newborns. About 90% result from meiotic nondisjunction during oogenesis, which occurs around conception, when also the most profound epigenetic modifications take place. Thus, maternal meiosis is an error prone process with an extreme sensitivity to endogenous factors, as exemplified by maternal age. This contrasts with the missing acceptance of causal exogenous factors. The proof of an environmental agent is a great challenge, both with respect to ascertainment bias, determination of time and dosage of exposure, as well as registration of the relevant individual health data affecting the birth prevalence. Based on a few exemplary epidemiological studies the feasibility of trisomy 21 monitoring is illustrated. In the nearer future the methodical premises will be clearly improved, both due to the establishment of electronic health registers and to the introduction of non-invasive prenatal tests. Down syndrome is a sentinel phenotype, presumably also with regard to other congenital anomalies. Thus, monitoring of trisomy 21 offers new chances for risk avoidance and preventive measures, but also for basic research concerning identification of relevant genomic variants involved in chromosomal nondisjunction.

2.
Hum Genet ; 141(11): 1785-1794, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35536377

RESUMO

The evolutionary conserved Polo-like kinase 4 (PLK4) is essential for centriole duplication, spindle assembly, and de novo centriole formation. In man, homozygous mutations in PLK4 lead to primary microcephaly, altered PLK4 expression is associated with aneuploidy in human embryos. Here, we report on a consanguineous four-generation family with 8 affected individuals compound heterozygous for a novel missense variant, c.881 T > G, and a deletion of the PLK4 gene. The clinical phenotype of the adult patients is mild compared to individuals with previously described PLK4 mutations. One individual was homozygous for the variant c.881G and phenotypically unaffected. The deletion was inherited by 14 of 16 offspring and thus exhibits transmission ratio distortion (TRD). Moreover, based on the already published families with PLK4 mutations, it could be shown that due to the preferential transmission of the mutant alleles, the number of affected offspring is significantly increased. It is assumed that reduced expression of PLK4 decreases the intrinsically high error rate of the first cell divisions after fertilization, increases the number of viable embryos and thus leads to preferential transmission of the deleted/mutated alleles.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Centríolos/genética , Centríolos/metabolismo , Humanos , Mutação , Proteínas Serina-Treonina Quinases/genética
3.
Aging (Albany NY) ; 12(12): 12342-12375, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32564008

RESUMO

BACKGROUND: Nibrin, as part of the NBN/MRE11/RAD50 complex, is mutated in Nijmegen breakage syndrome (NBS), which leads to impaired DNA damage response and lymphoid malignancy. RESULTS: Telomere length (TL) was markedly reduced in homozygous patients (and comparably so in all chromosomes) by ~40% (qPCR) and was slightly reduced in NBS heterozygotes older than 30 years (~25% in qPCR), in accordance with the respective cancer rates. Humanized cancer-free NBS mice had normal TL. Telomere elongation was inducible by telomerase and/or alternative telomere lengthening but was associated with abnormal expression of telomeric genes involved in aging and/or cell growth. Lymphoblastoid cells from NBS patients with long survival times (>12 years) displayed the shortest telomeres and low caspase 7 activity. CONCLUSIONS: NBS is a secondary telomeropathy. The two-edged sword of telomere attrition enhances the cancer-prone situation in NBS but can also lead to a relatively stable cellular phenotype in tumor survivors. Results suggest a modular model for progeroid syndromes with abnormal expression of telomeric genes as a molecular basis. METHODS: We studied TL and function in 38 homozygous individuals, 27 heterozygotes, one homozygous fetus, six NBS lymphoblastoid cell lines, and humanized NBS mice, all with the same founder NBN mutation: c.657_661del5.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de Quebra de Nijmegen/complicações , Proteínas Nucleares/genética , Progéria/genética , Homeostase do Telômero/genética , Telômero/patologia , Adolescente , Animais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Humanos , Lactente , Cariotipagem , Masculino , Camundongos , Camundongos Transgênicos , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/patologia , Progéria/patologia , Telomerase/metabolismo , Adulto Jovem
4.
Mol Cytogenet ; 11: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445421

RESUMO

BACKGROUND: Nijmegen breakage syndrome is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, hypersensitivity to X-irradiation, and a high predisposition to cancer. Nibrin, the product of the NBN gene, is part of the MRE11/RAD50 (MRN) complex that is involved in the repair of DNA double strand breaks (DSBs), and plays a critical role in the processing of DSBs in immune gene rearrangements, telomere maintenance, and meiotic recombination. NBS skin fibroblasts grow slowly in culture and enter early into senescence. CASE PRESENTATION: Here we present an incidental finding. Skin fibroblasts, derived from a 9 year old NBS patient, showed a mosaic of normal diploid cells (46,XY) and those with a complex, unbalanced translocation. The aberrant karyotype was analysed by G-banding, comparative genomic hybridization, and whole chromosome painting. The exact breakpoints of the derivative chromosome were mapped by whole genome sequencing: 45,XY,der(6)(6pter → 6q11.1::13q11 → 13q21.33::20q11.22 → 20qter),-13. The deleted region of chromosomes 6 harbors almost 1.400 and that of chromosome 13 more than 500 genes, the duplicated region of chromosome 20 contains about 700 genes. Such unbalanced translocations are regularly incompatible with cellular survival, except in malignant cells. The aberrant cells, however, showed a high proliferation potential and could even be clonally expanded. Telomere length was significantly reduced, hTERT was not expressed. The cells underwent about 50 population doublings until they entered into senescence. The chromosomal preparation performed shortly before senescence showed telomere fusions, premature centromere divisions, endoreduplications and tetraploid cells, isochromatid breaks and a variety of marker chromosomes. Inspection of the site of skin biopsy 18 years later, presented no evidence for abnormal growth. CONCLUSIONS: The aberrant cells had a significant selective advantage in vitro. It is therefore tempting to speculate that this highly unbalanced translocation could be a primary driver of cancer cell growth.

5.
Pediatr Hematol Oncol ; 33(1): 5-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26900943

RESUMO

A substantial number of individuals with Fanconi anemia (FA) develop bone marrow failure and are treated with androgen therapy in order to increase blood counts. The authors retrospectively identified 70 patients who received androgen therapy any time between July 1976 and September 2014. Among these patients, 37 had medical records for analysis. Twenty-five of the 37 (68%) patients had response in hemoglobin level (n = 25), platelet count (n = 21), and/or absolute neutrophil count (n = 13). The median rise in hemoglobin was 6.5 mg/dL, platelet count 70,000/mm(3), and absolute neutrophil count (ANC) 1530/µL. The majority of patients (n = 22) had a response in 2 or more blood parameters. Reasons for discontinuation of therapy included development of cytogenetic aberrations (n = 9), lack of response (n = 7), hepatic adenoma (n = 6), progression to myelodysplastic syndrome/acute myeloid leukemia (n = 3), stabilization of blood parameters (n = 3), resolution of cytopenia secondary to mosaicism (n = 1), virilization (n = 1), development of anogenital carcinoma (n = 1), inaccessibility of medication (n = 1), and unknown (n = 1). Four patients at last follow-up remain on androgen therapy. These results highlight that androgen therapy can significantly improve blood counts for many FA patients, but progression of underlying bone marrow disease and development of liver adenomas requires careful monitoring.


Assuntos
Androgênios , Adenoma/sangue , Adenoma/mortalidade , Adolescente , Adulto , Androgênios/efeitos adversos , Androgênios/uso terapêutico , Criança , Pré-Escolar , Anemia de Fanconi/sangue , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/mortalidade , Feminino , Alemanha/epidemiologia , Hemoglobinas/metabolismo , Humanos , Contagem de Leucócitos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Masculino , Segunda Neoplasia Primária/sangue , Segunda Neoplasia Primária/mortalidade , Estudos Retrospectivos
6.
Prenat Diagn ; 35(1): 81-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25174624

RESUMO

OBJECTIVE: The aim of the present study was to assess the risk of major anomalies in the offspring of consanguineous couples, including data on the prenatal situation. METHODS: Over 20 years (1993-2012), 35,391 fetuses were examined by prenatal sonography. In 675 cases (1.9%), parents were consanguineous, with 307 couples (45.5%) related as first cousins, 368 couples (54.5%) beyond first cousins. Detailed information was retrieved on 31,710 (89.6%) fetuses, (consanguineous 568: 1.8%). RESULTS: Overall prevalence of major anomalies among fetuses with non-consanguineous parents was 2.9% (consanguineous, 10.9%; first cousins, 12.4%; beyond first cousins, 6.5%). Adjusting the overall numbers for cases having been referred because of a previous index case, the prevalences were 2.8% (non-consanguineous) and 6.1% (consanguineous) (first cousin, 8.5%; beyond first cousin, 3.9%). Further adjustment for differential rates of trisomic pregnancies indicated 2.0%/5.9% congenital anomalies (non-consanguineous/consanguineous groups), that is, a consanguinity-associated excess of 3.9%, 6.1% in first cousin progeny and 1.9% beyond first cousin. CONCLUSIONS: The prevalence of major fetal anomalies associated with consanguinity is higher than in evaluations based only on postnatal life. It is important that this information is made available in genetic counselling programmes, especially in multi-ethnic and multi-religious communities, to enable couples to make informed decisions.


Assuntos
Consanguinidade , Etnicidade/estatística & dados numéricos , Resultado da Gravidez/epidemiologia , Adolescente , Adulto , Europa (Continente)/epidemiologia , Feminino , Alemanha/epidemiologia , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Gravidez , Prevalência , População Urbana/estatística & dados numéricos , Adulto Jovem
7.
Cytogenet Genome Res ; 147(4): 240-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26959372

RESUMO

Two 5-methylcytosine (5-MeC)-rich heterochromatic regions were demonstrated in metaphase chromosomes of the Indian muntjac by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. The metaphases were obtained from diploid and triploid cell lines. A major region is located in the 'neck' of the 3;X fusion chromosome and can be detected after denaturation of the chromosomal DNA with UV-light irradiation for 1 h. It is located exactly at the border of the X chromosome and the translocated autosome 3. A minor region is found in the centromeric region of the free autosome 3 after denaturing the chromosomal DNA for 3 h or longer. The structure and possible function of the major hypermethylated region as barrier against spreading of the X-inactivation process into the autosome 3 is discussed.


Assuntos
5-Metilcitosina/análise , Heterocromatina/química , Cervo Muntjac/genética , Animais , Linhagem Celular , Masculino
8.
PLoS Pathog ; 10(10): e1004514, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25393019

RESUMO

Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death.


Assuntos
Ciclina A2/metabolismo , Citomegalovirus/fisiologia , Replicação do DNA , Proteínas Virais/metabolismo , Replicação Viral , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Ciclina A2/genética , Citomegalovirus/genética , Regulação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mitose , Complexo de Endopeptidases do Proteassoma , Mapeamento de Interação de Proteínas , Transativadores/genética , Transativadores/metabolismo , Regulação para Cima , Proteínas Virais/genética
9.
Blood ; 122(7): 1312-5, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23733340

RESUMO

To ascertain the genetic basis of a paroxysmal nocturnal hemoglobinuria (PNH) case without somatic mutations in PIGA, we performed deep next-generation sequencing on all exons of known genes of the glycosylphosphatidylinositol (GPI) anchor synthesis pathway. We identified a heterozygous germline splice site mutation in PIGT and a somatic 8-MB deletion in granulocytes affecting the other copy of PIGT. PIGA is essential for GPI anchor synthesis, whereas PIGT is essential for attachment of the preassembled GPI anchor to proteins. Although a single mutation event in the X-chromosomal gene PIGA is known to cause GPI-anchored protein deficiency, 2 such hits are required in the autosomal gene PIGT. Our data indicate that PNH can occur even in the presence of fully assembled GPI if its transfer to proteins is defective in hematopoietic stem cells.


Assuntos
Aciltransferases/genética , Mutação em Linhagem Germinativa/genética , Hemoglobinúria Paroxística/genética , Mutação/genética , Adulto , Processamento Alternativo/genética , Animais , Células CHO , Estudos de Casos e Controles , Hibridização Genômica Comparativa , Cricetulus , Éxons/genética , Feminino , Citometria de Fluxo , Genes Ligados ao Cromossomo X , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência de DNA , Deleção de Sequência
10.
Bone ; 55(2): 292-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685543

RESUMO

Autosomal recessive osteopetrosis (ARO, MIM 259700) is a genetically heterogeneous rare skeletal disorder characterized by failure of osteoclast resorption leading to pathologically increased bone density, bone marrow failure, and fractures. In the neuronopathic form neurological complications are especially severe and progressive. An early identification of the underlying genetic defect is imperative for assessment of prognosis and treatment by hematopoietic stem cell transplantation. Here we describe for the first time homozygous microdeletions of different sizes affecting the OSTM1 gene in two unrelated consanguineous families with children suffering from neuronopathic infantile malignant osteopetrosis. Patients showed an exceptionally severe phenotype with variable CNS malformations, seizures, blindness, and deafness. Multi-organ failure due to sepsis led to early death between six weeks and five months of age in spite of intensive care treatment. Analysis of the breakpoints revealed different mechanisms underlying both rearrangements. Microdeletions seem to represent a considerable portion of OSTM1 mutations and should therefore be included in a sufficient diagnostic screening.


Assuntos
Deleção de Genes , Proteínas de Membrana/genética , Osteopetrose/congênito , Ubiquitina-Proteína Ligases/genética , Sequência de Bases , Consanguinidade , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Osteopetrose/genética , Osteopetrose/patologia , Linhagem , Reação em Cadeia da Polimerase em Tempo Real
11.
PLoS One ; 7(8): e40387, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952573

RESUMO

Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 3' exons (MCPH1Δe9-14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.


Assuntos
Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Motivos de Aminoácidos , Ciclo Celular , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Centrossomo/ultraestrutura , Cromatina/química , Cromossomos/ultraestrutura , Proteínas do Citoesqueleto , Éxons , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Modelos Genéticos , Peptídeos/química , Isoformas de Proteínas , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Distribuição Tecidual
12.
Anemia ; 2012: 349837, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675616

RESUMO

Fanconi anaemia (FA) is an inherited disease with congenital and developmental abnormalities, bone marrow failure, and extreme risk of leukemic transformation. Bone marrow surveillance is an important part of the clinical management of FA and often reveals cytogenetic aberrations. Here, we review bone marrow findings in FA and discuss the clinical and biological implications of chromosomal aberrations associated with leukemic transformation.

13.
Clin Dysmorphol ; 21(4): 183-190, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22643382

RESUMO

Patients with a combination of holoprosencephaly and polydactyly, but with apparently normal chromosomes, may be clinically diagnosed with holoprosencephaly-polydactyly syndrome (HPS), also termed pseudotrisomy 13. However, the criteria for HPS have been controversial since the advent of the diagnostic term, and a clear understanding of the condition lacks definitive delineation. We review the historical and current perspectives on the condition and analyze findings in 40 patients with apparent HPS, including cases from the literature and two previously unreported patients. Overall, our analysis suggests previously unrecognized trends in patients diagnosed with HPS. Specifically, there appears to be a higher prevalence of visceral anomalies, most significantly cardiac and genitourinary, but also with increased gastrointestinal, pulmonary, adrenal, skeletal, and renal abnormalities, in patients with HPS. Although these visceral anomalies may not be essential for the identification of HPS, clinicians should be aware of the presence of such characteristics in these patients to optimize management and help establish etiologies.


Assuntos
Macrossomia Fetal/complicações , Deformidades Congênitas da Mão/complicações , Holoprosencefalia/complicações , Polidactilia/complicações , Cromossomos Humanos Par 13 , Feto/anormalidades , Humanos , Lactente , Recém-Nascido , Masculino , Trissomia
14.
Genet Epidemiol ; 36(1): 48-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22162022

RESUMO

The objective of this study is to investigate the prevalence of Down syndrome (DS) associated with Chernobyl fallout. Maternal age-adjusted DS data and corresponding live birth data from the following seven European countries or regions were analyzed: Bavaria and West Berlin in Germany, Belarus, Hungary, the Lothian Region of Scotland, North West England, and Sweden from 1981 to 1992. To assess the underlying time trends in the DS occurrence, and to investigate whether there have been significant changes in the trend functions after Chernobyl, we applied logistic regression allowing for peaks and jumps from January 1987 onward. The majority of the trisomy 21 cases of the previously reported, highly significant January 1987 clusters in Belarus and West Berlin were conceived when the radioactive clouds with significant amounts of radionuclides with short physical half-lives, especially (131)iodine, passed over these regions. Apart from this, we also observed a significant longer lasting effect in both areas. Moreover, evidence for long-term changes in the DS prevalence in several other European regions is presented and explained by exposure, especially to (137)Cs. In many areas, (137)Cs uptake reached its maximum one year after the Chernobyl accident. Thus, the highest increase in trisomy 21 should be observed in 1987/1988, which is indeed the case. Based on the fact that maternal meiosis is an error prone process, the assumption of a causal relationship between low-dose irradiation and nondisjunction is the most likely explanation for the observed increase in DS after the Chernobyl reactor accident.


Assuntos
Acidente Nuclear de Chernobyl , Síndrome de Down/epidemiologia , Berlim/epidemiologia , Radioisótopos de Césio/farmacocinética , Transtornos Cromossômicos/epidemiologia , Transtornos Cromossômicos/etiologia , Relação Dose-Resposta à Radiação , Síndrome de Down/etiologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Recém-Nascido , Radioisótopos do Iodo/farmacocinética , Nascido Vivo , Idade Materna , Mosaicismo , República de Belarus/epidemiologia
15.
Neurogenetics ; 12(4): 273-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965147

RESUMO

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by cerebellar degeneration, immunodeficiency, oculocutaneous telangiectasias, chromosomal instability, radiosensitivity, and cancer predisposition. The gene mutated in the patients, ATM, encodes a member of the phosphatidylinositol 3-kinase family proteins. The ATM protein has a key role in the cellular response to DNA damage. Truncating and splice site mutations in ATM have been found in most patients with the classical AT phenotype. Here we report of our extensive ATM mutation screening on 25 AT patients from 19 families of different ethnic origin. Previously unknown mutations were identified in six patients including a new homozygous missense mutation, c.8110T>C (p.Cys2704Arg), in a severely affected patient. Comprehensive clinical data are presented for all patients described here along with data on ATM function generated by analysis of cell lines established from a subset of the patients.


Assuntos
Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Haplótipos , Humanos , Masculino , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Proteínas Supressoras de Tumor/metabolismo
16.
J Cell Biol ; 194(6): 841-54, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21911480

RESUMO

Mutations in human MCPH1 (hMCPH1) cause primary microcephaly, which is characterized by a marked reduction of brain size. Interestingly, hMCPH1 mutant patient cells display unique cellular phenotypes, including premature chromosome condensation (PCC), in G2 phase. To test whether hMCPH1 might directly participate in the regulation of chromosome condensation and, if so, how, we developed a cell-free assay using Xenopus laevis egg extracts. Our results demonstrate that an N-terminal domain of hMCPH1 specifically inhibits the action of condensin II by competing for its chromosomal binding sites in vitro. This simple and powerful assay allows us to dissect mutations causing primary microcephaly in vivo and evolutionary substitutions among different species. A complementation assay using patient cells revealed that, whereas the N-terminal domain of hMCPH1 is sufficient to rescue the PCC phenotype, its central domain plays an auxiliary role in shaping metaphase chromosomes by physically interacting with condensin II. Thus, hMCPH1 acts as a composite modulator of condensin II to regulate chromosome condensation and shaping.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas do Citoesqueleto , Humanos , Metáfase , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Xenopus
17.
Cell Cycle ; 10(17): 2967-77, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21857152

RESUMO

Primary autosomal recessive microcephaly (MCPH) is a congenital disorder characterized by a pronounced reduction of brain size and mental retardation. We present here a consanguineous Turkish family clinically diagnosed with MCPH and without linkage to any of the known loci (MCPH1-MCPH7). Autozygosity mapping identified a homozygous region of 15.8 Mb on chromosome 10q11.23-21.3, most likely representing a new locus for MCPH. Although we were unable to identify the underlying genetic defect after extensive molecular screening, we could delineate a possible molecular function in chromosome segregation by the characterization of mitosis in the patients' cells. Analyses of chromosome nondisjunction in T-lymphocytes and fibroblasts revealed a significantly elevated rate of nondisjunction in the patients' cells as compared to controls. Mitotic progression was further explored by immunofluorescence analyses of several chromosome and spindle associated proteins. We detected a remarkable alteration in the anaphase distribution of Aurora B and INCENP, which are key regulators of chromosome segregation. In particular, a fraction of both proteins remained abnormally loaded on chromosomes during anaphase in MCPH patients' cells while in cells of normal control subjects both proteins are completely transferred to the spindle midzone. We did not observe any other alterations regarding cell cycle progression, chromosome structure, or response to DNA damage. Our observations point towards a molecular role of the underlying gene product in the regulation of anaphase/telophase progression possibly through interaction with chromosomal passenger proteins. In addition, our findings represent further evidence for the proposed role of MCPH genes in the regulation of mitotic progression.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Microcefalia/genética , Proteínas Serina-Treonina Quinases/metabolismo , Adolescente , Anáfase , Aurora Quinase B , Aurora Quinases , Encéfalo/anormalidades , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 10/metabolismo , Biologia Computacional , Anormalidades Congênitas/patologia , Consanguinidade , Feminino , Imunofluorescência , Genoma Humano , Humanos , Masculino , Microcefalia/patologia , Mitose , Linhagem , Alinhamento de Sequência , Análise de Sequência de DNA , Turquia
19.
Cell Cycle ; 9(24): 4893-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21150325

RESUMO

Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular , Quebra Cromossômica , Proteínas do Citoesqueleto , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Predisposição Genética para Doença , Células HeLa , Humanos , Microcefalia/genética , Mutação , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA
20.
Hum Mutat ; 31(9): 1059-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20597108

RESUMO

We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous-end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS-like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS-like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family.


Assuntos
Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/patologia , Sequência de Bases , Western Blotting , Ciclo Celular , Criança , Pré-Escolar , Instabilidade Cromossômica/genética , Cromossomos Humanos/genética , Análise Mutacional de DNA , Genoma Humano/genética , Homozigoto , Humanos , Lactente , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...